
An Analysis of Polynomial and Generalized

Learning as Applied to the Game of Score-Four

Stephen Alan Broeker, M.S.
School of Information Science

Aurora University
Aurora, Illinois

Dennis F. Cudia, Advisor

January 12, 1989

Abstract

This thesis applies Findler’s version of polynomial learning (with ag-
gression) and a modified version of Findler’s generalization learning to
the game of Score-Four. Score-Four is similar to tic-tac-toe except that
it is three-dimensional, with a win achieved by gaining for-in-a-row in a
single plane. Findler’s generalization technique built up a table of all pos-
sible board positions and respective moves. Move selection then, consisted
of table lookup and thus did not use an Alpha-Beta look-ahead procedure.
Even though the table was reduced by removing board positions that were
symmetrically equivalent, table size was still excessive. Even though Find-
ler’s generalization technique does not rely on skilled opponents to achieve
significant learning, it does depened on polynomial learning to achieve sig-
nificant results.

This thesis, on the other hand, only stores board positions that directly
lead to wins. This reduction in table size is great enough to allow table
lookup to be employed by the Alpha-Beta look-ahead heuristic. The re-
sult is a generalization technique that does not rely on skilled opponents
to achive significant learning, and does not use polynomial learning to
achieve significant results. A statistical analysis is applied to the results
to determine the relative merits of polynomial learning (with and without
aggresion) and generalization (with and without polynomial).

1 Background

1.1 Introduction

This thesis is submitted in partial fullfillment of the requirements for the degree
of Master of Science in Computer Science in the School of Information Science
of Aurora University.

1

Machine learning has received increased attention in the artificial intelligence
community in the last two decades. The motives for this increased attention
range from understanding human learning to supporting automation construc-
tion. Different types of learning have been studied and implemented on special
and general purpose computers. Some of these learning techniques have been
applied to games, since they represent a conceptually rich universe with well
defined boundaries. Many computer games make use of a look-ahead procedure
such as Alpha-Beta mini-maxing technique [5,6]. When look-ahead procedures
are applied to games of enough complexity, generating all possible paths is not
possible in real time and evaluation functions or heuristics become paramount.
This project focuses on two learning techniques that fall under these criteria:
polynomial and generalization.

1.2 Samuel - Polynomial Learning

Polynomial learning was first investigated and applied to the game of Checkers
by A. L. Samuel [5, 6]. For a brief synopsis of Samuel’s Polynomial learning
technique refer to Griffith [3]. Samuel proposed defining a set of heuristic
parameters and assigning each parameter to a term in a linear polynomial.
This polynomial was used in the heuristic evaluation of board configurations.
The computer program’s task was to determine the value of the coefficients in
the polynomial. The coefficients were adujsted as follows: the scoring polyomial
was computed for the board and saved in its entirety at each move by Alpha.
At the same time, Alpha computed the backed-up score for all board positions
using a look-ahead procedure. The polynomial was evaluated by comparing
the saved value of the polynomial from the previous move to the result of the
look-ahead procedure. The difference of these two values was defined as delta.
If delta was significantly positive, then Samuel assumed that the initial board
evaluation was in error and terms that contributed positively should have been
given more weight, while those that contributed negatively should have been
given less weight. A converse statement was made for the case when delta
was significantly negative. The change to the polynomial terms was not made
directly, but was brought about in an involved way. A record was kept of
the correlation between the signs of the invidvidual terms in the initial scoring
polynomial and the sign of delta. After each play, the correlation coefficients
were determined by setting the term with the largest correlation coefficient to
a prescribed maximum value and scaling down the rest of the term coefficients
accordingly. The goal then, was for term coefficients to stabalize over time as
an indication of the learning process.

Samuel defined a total of 39 parameters for his Checkers polynomial. This
large number of terms resulted in a heuristic evaluation function that in his
opinion was to slow. So, he limited the number of terms used in evaluation to
16 at any one time. During play, if a coefficient fell below a prescribed value,
then that term was replaced by a term that was currently unused.

After the term coefficients were picked arbitrarily, a series of games was
held by engaging in self-play, play against many different individuals (several of

2

these being checker masters) and play against book games. Self-play, primarily
used during the early stages of learning, involved playing against a polynomial
with fixed coefficients. At the conclusion of the learning period, the program
was judged to be a better-than-average-player. Samuel stated that a detailed
analysis of the results of the games showed that the learning procedure did work
and that the rate of learning was surprisingly high, but that the learning was
erratic and unstable.

Samuel pointed out a few deficiences in his learning technique. During the
remembered play, use was made of Alpha’s current scoring polynomial to deter-
mine Alpha’s moves, but not to determine the opponent’s moves. During the
anticipation play, the moves for both sides were made by using Alpha’s scoring
polynomial. In other words, the polynomial assumed that both sides were of
equal ability. Samuel did not propose a solution to this problem. Another prob-
lem was that the program was fooled by bad play by its opponent. The program
could learn bad or good technique depending on the ability of the opponent. His
solution to this was to change the correlation coefficients less drastically when
delta was positive.

1.3 Samuel - Signature Tables

As previously noted, Samuel felt that the rate of learning was erratic and un-
stable. He thought that this was due, in large part, to the use of a subset of
the terms in the polynomial evaluation function. The evaluation function thus
did not take into account all possible inter-parameter effects. A compromise
solution to this problem was to change the parameters to output only 3 values
0, 1, and 2 corresponding to high positive, near zero, and low negative values
of the parameter. The modified parameters were then grouped into sets (of
three, five, and eight) called signature tables. A set of five thus consisted of 35

(243) entries corresponding to all possible combinations of the values of the five
parameters comprising that signature table. Board evaluation thus consisted
of looking up a series of tuples from each of the signature tables (a signature
table consisting of three parameters would give a 3-tuple, a five parameter table
would give a 5-tuple, and an eight parameter table would give an 8-tuple). The
process of learning then, involved the acquisition of the signature table entries.
Each table entry was calculated as the quotient of the number of strong board
positions to which the entry corresponds, divided by the total number (strong
and weak) to which it corresponds. The positions (both strong and weak) were
derived from book games.

Obviously, it was not practical for the evaluation function to use all possible
signature tables for the 38 parameters in Checkers. Samuel chose to limit the
number of signature tables to 48. After processing over 180,000 book moves,
Samuel concluded that the signature table method seemed to be superior to the
polynomial procedure. But, he also noted that the chief defect of the program
was a failure to maintain a fixed strategy during play. This was caused by a
bad choice of signature tables during play.

3

1.4 Findler - Polynomial Learning

Nicholas V. Findler [1] modified Samuel’s Polynomial technique and applied it
to Go-Moku, a two-dimensional game in which the object is to obtain a chain
of five consecutive stones. He simplified the algorithm by limiting the number
of different coefficient terms as follows: every chain on the board had a value to
each of the two players. If a chain had one or more stones of one player, then it
was of no interest to the other player. The polynomial was limited to four terms,
with the first term representing one stone in an interesting chain, the second
term representing two stones in an interesting chain, and so on. The scoring
polynomial was only applied to the moves that had been made during the look-
ahead procedure, not to all the stones on the board. Thus, if the procedure used
a tree of depth four, then the scoring polynomial was applied to two moves of
Alpha and two moves of Beta during each look-ahead.

Findler addressed the problem of Samuel’s program applying the polynomial
equally to both sides by multiplying Alpha’s polynomial score by an aggression
factor. The aggression factor was the ratio of the Alpha move with the max-
imum scoring polynomial value to the Beta move with the maximum scoring
polynomial. This factor was calculated before each application of the look-ahead
procedure. Thus, if Alpha was ahead, it would play more aggressively than if
Beta was ahead.

Findler also simplified the way that the term coefficients were modified. The
program learned strictly by self-play. The opponent was assigned an exact copy
of Alpha’s current scoring polynomial, except that a specific term coefficient was
multiplied by .95. A game was played with Alpha going first, then a game was
played with Beta going first. The same term coefficient was then changed from
being .95 times Alpha’s coefficient to 1.05 times Alpha’s coefficient. Two more
games were then played with Alpha and Beta alternating the first move. At the
completion of the series of games, Alpha’s term coefficient was increased if the
outcome of the four games was one of (A, A, B, B), (A, D, B, B), (D, A, B, B),
(A, A, B, D), and (A, D, D, B). The coefficient was decreased if the outcome of
the four games was one of (B, B, A, A), (B, D, A, A), (D, B, A, A), (B, B, D,
A), (B, B, A, D), and (B, D, D, A). Here A shows that Alpha won, B shows that
Beta won, and D shows a draw game. The program repeated this procedure
several times for all terms in the scoring polynomial. The result, according to
Findler, was a program that played reasonably better than the average human
player.

When compared to Samuel’s Polynomial learning technique, Findler’s Poly-
nomial learning algorithm has the advantage of not depending on the skill of
the opponent to achieve significant results. Samuel depended largely on book
games to develop experience. Findler’s Polynomial, on the other hand, uses
self-play to develop experience. Findler’s Polynomial though was in no way
complete, since a number of possible terms were not included in the polynomial
(number of stones in corners, number of stones in the middle positions, and
number stones on the edges, to name a few). Thus, like Samuel’s Polynomial,
Findler’s Polynomial is dependent on a wise choice of polynomial terms and

4

term combinations.

1.5 Findler - Generalized Learning

Findler also designed and implemented a generalization technique in a program
that played Go-Moku. The program was built in several stages and was named
NIP (Novice In Playing). The author implied that the stages could be said to
reflect different stages in human learning. In the first stage, called imitation, NIP
played against an experienced player and built up a table of board positions and
moves made in the respective positions. Findler use an experienced polynomial
version of the game (referred to as Old Wise Logician or OWL for short) as
the experienced player. The table consisted of local patterns, small subsets of
the (19 x 19) board. Whenever NIP was to make a move, it compared board
patterns to entries in the table (Alpha-Beta mini-maxing was not employed).
If a match was found, NIP imitated OWL. For multiple matches, NIP used a
heuristic rule to pick the best move. If a match was not found, then NIP asked
OWL to make the move for him and recorded the result in the table.

The next stage, called reversed Socrates type learning, was employed when
the table grew to an excessive size. It consisted of NIP analyzing the table and
recognizing patterns that were similar, that is, reflections or rotations of each
other. These patterns were then replaced by a single pattern with a code to
indicate valid permutations. The patterns were simplified further by removing
a stone and passing the new pattern to OWL for evaluation. If the result was
similar, then the stone was identified as being inconsequential to the pattern
and thrown away. Otherwise, the stone was replaced. This stage resulted in the
table being reduced from a maximum of several million entries to about 9,000
entries.

The last stage allowed NIP to improve on OWL’s strategy. Whenever NIP
lost a game, it would change one of its last moves of the game and restart the
game from that point. If it won, then the new pattern would be entered into
the table. NIP repeated this procedure several times for each lost game. The
result was that NIP was able to learn from its mistakes and out-perform OWL.
Clearly, at this point, NIP was generalizing.

At first glance NIP, to some degree, might seem to depend on the skill of its
opponent to achieve significant results. Even though NIP depends on OWL to
evaluate moves, OWL relies on self-play and thus NIP’s ability does not depend
on skilled opponents to achieve experience. Therefore Findler’s Generalization
technique, when compared to Samuel’s Polynomial and Signature Table tech-
niques, has the advantage of not depending on skilled opponents. But since
OWL does rely on a wise choice of polynomial terms and term combinations, so
does NIP. Therefore in this respect, Findler’s Generalization technique is similar
to Samuel’s techniques.

5

2 Results

This thesis applies Findler’s version of polynomial learning and a modified ver-
sion of Findler’s generalization learning to the game of Score-Four. This thesis
stores only those configurations that directly lead to wins. The reduction in
table size is great enough to allow table lookup to be employed by the Alpha-
Beta look-ahead heuristic. The result is a generalization technique that does
not rely on skilled opponents to achieve significant learning, and does not use
polynomial learning to achieve significant results.

Score-Four is similar to tic-tac-toe except that it is three-dimensional, with
a win achieved by gaining four-in-a-row in a single plane. Therefore, Score-Four
is inherently more complex than the planer, two-dimensional game of Checkers.
The board is thus (4 x 4 x 4), which gives a maximum of 64 different moves
at one time, or an average of 32. Thus the generation of all possible paths (or
search tree) through the game involves a maximum of 64! (approximately 1089)
moves and an average of 32! (approximately 1035) moves. At 12 moves per
millisecond (see the Programming Details - Section 5.1), the generation of the
maximum search tree would require 1075 centuries and the generation of the
average search tree would require 1021 centuries. If the Alpha-Beta look-ahead
factor is limited to 8 (4 moves by Alpha and 4 moves by Beta), then the number
of nodes in the maximum search tree is given by:

64 x 63 x 62 x 61 x 60 x 59 x 58 x 57 ≈ 1014

and the number of nodes in the average search tree is given by:

32 x 31 x 30 x 29 x 28 x 27 x 26 x 25 ≈ 1011

The generation of the maximum search tree would thus require 50 centuries
and the generation of the average search tree would require 10 years.

Samuel calculated the number of moves in the Checkers search tree to be
approximately 1040. He also stated that his checker playing program could select
a move in 15 milliseconds. Thus, the generation of the Checkers search tree,
by Samuel, would require 1028 centuries. Cleary then, search tree generation in
Score-Four is of greater computational complexity than search tree generation
in Checkers. Score-Four is thus unsolvable in real time when using Alpha-Beta
look-ahead to completion and thus lends itself nicely to learning algorithms.

3 Procedure

3.1 Introduction

The first task in the research was to create goals and guidelines. It was decided
that the design of the programs would stress ease of implementation and avoid
hardware or operating system’s dependencies. This guideline was chosen to ease
porting to general purpose machines. Another requirement was that the Alpha-
Beta mini-maxing procedure to be fast enough so that the choice of a single move

6

did not take more than 60 seconds. This goal was chosen to ensure real time
analysis. A final requirement was that memory usage be kept to a minimum
(i.e., 8 Megabytes). These goals and guidelines led to the following decisions. C
was chosen as the programming language, because of its wide acceptance and
great power. The project was tested and analyzed on an AT&T 3B2 600, that
has been rated at 5.0 MIPS, running UNIX System V Release 3.2.1.

The next task in the research was to create a program (called SCORE4)
that used Alpha-Beta mini-maxing to play the game against both humans and
other computer programs. The Alpha-Beta look-ahead factor was limited to two
(one move by Alpha and move move by Beta) so that SCORE4 was forced to
make use of learning techniques, rather than relying on a depth-first tree search
(rote learning). The Alpha-Beta evaluation heuristic was designed to use any
combination of polynomial, aggression, and generalization learning techniques
when playing games. Particular combinations were chosen by use of command
line options or other external means.

3.2 Stage 1 Generalized Learning

The generalization technique used by SCORE4 (here after referred to as GEN-
ERAL) was built in two stages. Stage 1 GENERAL was similar to NIP in that
it used a table of local patterns. In Stage 1 GENERAL, a local pattern was
defined to encompass a plane (i.e., 4 x 4). Since there are 18 planes in a cube,
there were 18 distinct (but not disjoint) local patterns in the board at any one
time. Since each cell in a plane had three possible values (’X’, ’O’, or blank),
there are a total of 316 (= 43,046,721) possible configurations to be stored in the
table. Of this number, 9,228,284 contain four-in-a-row for ’X’ or ’O’ and will
thus not be included in the table. That leaves a total of 33,818,437 patterns.
The table can be reduced further by replacing patterns, that are symmetrical,
with a single pattern and a code to indicate the valid transformations. So, there
are 3,646 patterns that are symmetrical with respect to a single rotation. This
number of patterns can thus be replaced by 1,823 (= 3,646/2) patterns. There
are 45,248 patterns that are symmetrical with respect to three rotations. This
number of patterns can thus be replaced by 11,312 (= 45,248/4) patterns. There
are 33,769,488 patterns that are symmetrical with respect to size rotations and
a single reflection. This number of patterns can thus be replaced by 4,221,186
(= 33,769,488/8) patterns. So instead of 33,818,437 patterns, the number of
patterns is:

4,234,376 = 33,818,437 -

(3,646 - 1,823) -

(45,248 - 11,312) -

(33,769,488 - 4,221,186)

This number of patterns can be cut in half, since for each pattern in the
table, there exists another pattern that is its mirror image (replace the ’X’s
with ’O’s and the ’O’s with ’X’s). The result is 4,234,376 patterns. If two words

7

(eight bytes) are needed to store a single pattern (two bytes for ’X’s plane,
two bytes for ’O’s plane, two bytes for the resulting move, and two bytes for
the transformation code), then approximately 32 Megabytes are needed for the
table. This exceeds the previously stated limit of 8 Megabytes. Thus Findler’s
method of Generalization would result in excessive memory requirements when
applied to Score-Four.

This led to the decision that Stage 1 GENERAL would only store a reduced
set of patterns in the table. This reduced set consisted of patterns that contained
traps, that is, patterns in which Alpha would win no matter what move was
chosen by Beta. Such patterns were referred to as ”trap patterns”. These
patterns contained at least two interesting chains, each of which contained three
stones. For example, in the pattern in Figure 1, ’X’ will win no matter what
move is chosen by ’O’.

Figure 1

X

X X X
X

This table did not actually consist of trap patterns, but rather patterns that
could result in traps. For example, in the pattern in Figure 2, ’X’ is one move
away from a trap.

Figure 2

X
O

X X
X O

The pattern table was thus broken up into two levels. Level one contained
patterns that were one move away from a trap. Level two contained patterns
that were two moves away from a trap.

Since the tables only contained patterns that lead directly to traps, pattern
table lookup had to be performed in an Alpha-Beta look-ahead heruistic. Stage
1 GENERAL’s evaluation technique consisted of first comparing all local planes
in the board to level one patterns. If a match was found, then that move (board
configuration) was given a high value (TRAP1 VALUE). If a match was not
found, then all local planes in the board were compared to level two patterns.
If a match was found, then that move was given a value that was less than
(TRAP1 VALUE - TRAP2 VALUE). If a level two match was not found, then
polynomial evaluation (POLY) was applied. Since there were 18 local patterns
for each board configuration, care was taken to ensure that TRAP1 VALUE,
TRAP2 VALUE, and POLY values were significantly different. A board config-
uration that did not contain a level one trap could not have an Alpha-Beta value

8

greater than or equal to TRAP1 VALUE, and a board configuration that did
not contain a level two trap could not have an Alpha-Beta value greater than or
equal to TRAP2 VALUE. The heuristic evaluation function was thus designed
to detect such error states. In addition, the contraints in Figure 3 ensure that
TRAP1 VALUE, TRAP2 VALUE, and POLY values are significantly unequal.

Figure 3

TRAP2_VALUE = (TRAP1_VALUE - 1) / (NUM_TRAP2 x PLANES)

MAX_POLY_VALUE < (TRAP2_VALUE - 1) / CHAINS

where:

NUM_TRAP2 = number of possble level 2 traps in a plane = 1,152.

PLANES = number of planes in a cube = 18.

MAX_POLY_VALUE = the maximum value returned by POLY.

CHAINS = number of interesting chains in a cube = 76.

The time spent by Stage 1 GENERAL in heuristic evaluation was much
greater than the time spent by POLY in similar evaluation (the implementation
of POLY is discussed in a later section). The data structures used to represent
the board were thus chosen to minimize Stage 1 GENERAL’s evaluation time.
In particular, the board was represented by two sub-boards - one each for Alpha
and Beta. Each sub-board was an array of 18 planes. Planes then, contained
16 elements or cells. The storage requirements for each cell were one bit since
each cell assumed a value of ”move taken” or ”move not taken”. Thus, each
sub-board was an array of 18 short integers. This obviously assumes a 32 bit
machine word length. This data structure is erroneous for a machine word with
less than 32 bits and not optimal for a machine words with more than 32 bits.
It was felt that this restriction was not limiting because of the wide use of the
32 bit word in today’s architectures.

Since the pattern table did not contain all possible patterns, hashing could
not be used as a look-up technique. Care then, had to be taken to ensure that the
pattern table was of minimal size so that sequential search could be used. This
resulted in a generalization similar to that of NIP and was achieved as follows.
Additions were made to the pattern table whenever Stage 1 GENERAL lost. In
such a case, Stage 1 GENERAL referred to the second-to-the-last move made
by the opponent (the one just before the win) and examined all local planes that
contained that move. If a local plane contained a trap, then it was considered
to be a candidate for entry into the pattern table. A plane was considered to
contain a trap if Stage 1 GENERAL was not able to stop the opponent from
winning in the plane. That is, Stage 1 GENERAL restarted the game. If the
opponent was able to win using a different move, then the plane was judged to
contain a trap. Local trap planes were then simplified by eliminating extraneous
stones and restarting the game from that point. If the opponent still won, then
the local plane had been reduced. Otherwise, stones were replaced.

9

The resulting pattern was represented by two short integers. The first short
showed all positions that had to be filled. Positions that were filled signified the
moves required for that trap. The second short indicated positions that had to
be empty. Empty positions signified moves that must not be made. With this
representation, pattern table comparison consisted of comparing local and table
planes. The C code fragment in Figure 4 performs the comparison.

Figure 4

short a_local; /* Alpha local plane */

short b_local; /* Beta local plane */

short a_table; /* Alpha table plane */

short b_table; /* Beta table plane */

int f_equal; /* are the planes equal? */

if ((a_local & a_table) == a_table && ((a_local | b_local) & b_table) == 0)

f_equal = TRUE;

else

f_equal == FALSE;

If the pattern was already in the table, then the win was the result of a trap
that encompassed more than one plane. Stage 1 GENERAL did not attempt
to recognize this type of trap. If the pattern was not in the table, then Stage
1 GENERAL could conclude that the pattern represented a trap that should
be added to the table. At this point, Stage 1 GENERAL generalized by per-
muting, revolving, and rotating the trap. The pattern was rotated six times
and revolved once. If the pattern was asymmetrical, then the result was eight
distinct patterns. Otherwise the pattern was symmetrical about one axis and
only four of the patterns were unique. Whatever the case, the resulting patterns
were each permuted nine times. Thus, from one trap, Stage 1 GENERAL was
able to add either thirty-size or seventy-two level one patterns to the table. The
alternative was to add the pattern to the table and have Stage 1 GENERAL do
the rotations, reflections, and permutations for each pattern table comparison.
Cleary, this would have resulted in a slower comparison. An example of a per-
mutation is as follows. Assume Stage 1 General discovered that the level 2 trap
in Figure 5 was not in the table. (This trap would be stored in the table with the
first short integer containing the ’X’s and the second short integer containing
the ’O’s).

Figure 5

X
X X

O O
X O

10

Then the trap in Figure 6 would be a valid permutation and could also be
added to the table.

Figure 6

O X
O O
X X
X

It turns out that there were five different traps in a plane. Three of these
traps were asymmetrical and two were symmetrical about one axis. When these
traps were permuted and rotated, there was thus a total of 288 level one traps.
Each level one trap resulted in four level two traps, so there were a total of 1,152
level two traps. Now, the storage requirements for each trap was four bytes (two
short integers), so the total space requirement for the table was:

(288 X 4) + (1,152 X 4) = 5,760 bytes <6 KB

The pattern table was stored in a disk file between games. So one of
SCORE4’s first tasks, when invoked, was to read in the table from the disk
file to memory. For simplicity’s sake (user readability), only the level one per-
mutations (72 in number) were stored in the disk file. Thus, when the file was
read into memory, SCORE4 generated the remaining level one patterns, by ro-
tating each pattern three times. The level two traps then, were obtained by
copying in each level one pattern along with its three rotations.

The learing phase for Stage 1 GENERAL, consisted of matching Stage 1
GENERAL, without Polynomial evaluation, against an unexperienced version
of POLY with arbitrary coefficients. This enabled Stage 1 GENERAL to lose
quickly and thus learn quickly. Theoretically, in order for Stage 1 GENERAL
to recognize the five different traps, it would need to lose a game for each of the
five traps. But in actuality, Stage 1 GENERAL lost one game and then it was
a simple matter for the author to generate the rest of the table by hand. Stage
1 GENERAL was able then, to become highly experienced in a short amount
of time without relying on a skilled opponent.

3.3 Polynomial Learning

As previously stated, SCORE4 also applied Findler’s version of the polynomial
technique, with aggression, to the game. The resulting polynomial learning
technique used a polynomial with three terms: term one represented one stone
in an interesting chain; term two represented two stones in an interesting chain,
and term three represented three stones in an interesting chain. Four stones
in a row were not represented by a term since such a combination was a win
and would thus be found by the mini-maxing algorithm before heuristics were
applied.

11

Unlike Findler’s polynomial version, the heuristic function (POLY and Stage
1 GENERAL) was applied to all positions on the board during each look-ahead
procedure. The reasoning behind this is as follows. Consider the scenario where
the opponent had two disjoint level two traps on the board at one time. And
assume that the heuristic was only applied to the two moves made during the
look-ahead procedure. Then the backed-up mini-max value would be (-1 x
TRAP2 VALUE), no matter what move was chosen by SCORE4, since the
opponent would always have a level two trap move available. This would result
in SCORE4 choosing the first available move on the board, regardless if the
move blocked one of the opponent’s level two traps. Now assume that the
heuristic was applied to all positions that were currently filled. Then two of the
moves open to SCORE4 would have the value (-1 x TRAP2 VALUE) and the
remaining open moves would have the value (-2 x TRAP2 VALUE). SCORE4
would thus choose to block one of the opponent’s level two traps.

Once POLY and Stage 1 GENERAL had been completed, the polynomial
learning technique could be implemented. As previously noted, Findler’s poly-
nomial learning technique (here after referred to as Version A) defined a tour-
nament to consist of four games. In each tournament, Beta was assigned a copy
of Alpha’s coefficients, except that a particular coefficient was multiplied by .95
for the first two games and 1.05 for the last two games. Alpha and Beta took
turns going first. Version A also defined a series to be four tournaments, one
tournament for each coefficient. At the completion of a tournament, Alpha’s
term coefficient was increased if the outcome of the four games was one of (A,
A, B, B), (A, D, B, B), (D, A, B, B), (A, A, B, D), and (A, D, D, B). The
coefficient was decreased if the outcome of the four games was one of (B, B, A,
A), (B, D, A, A), (D, B, A, A), (B, B, D, A), (B, B, A, D), and (B, D, D, A).
Version A was implemented in its entirety. The learning process was stopped
when either a series did not result in a change to a coefficient or a total of 125
series had been played.

A variation of Version A, called Version B, was also implemented. Version
B was different in that a tournament consisted of two games. In each tourna-
ment Beta was assigned a copy of Alpha’s coefficients, except that a particular
coefficient was multiplied by a factor. This factor differed for each series. It
was initially .95 and decreased by increments of .05. If one of Alpha’s coeffi-
cients changed during a series, then the factor was reset to .95. Alpha and Beta
took turns going first in each tournament. At the completion of a tournament,
Beta’s coefficient was assigned to Alpha’s coefficient if Beta won both games.
The learning process was stopped when the factor reached zero or a total of 125
series had been played.

3.4 Stage 2 Generalized Learning

Even though Stage 1 GENERAL did not rely on skilled opponents to become
highly experienced, it did have the shortcoming of using polynomial learning to
achieve significant results. Stage 2 GENERAL was developed to overcome this
limitation by changing the pattern table to consist of only one level. That is,

12

the pattern table only contained patterns that were one move away from a trap.
The amount of table space was thus decreased from 5,760 bytes to 1,152 bytes.
This reduction in table size decreased the time required for table lookup and
thus sped up the heuristic evaluation.

Stage 2 GENERAL’s evaluation technique consisted of comparing all local
planes in the board to patterns in the table. Local planes were assigned val-
ues depending on how many moves were required to turn a local plane into a
table pattern. That is, if a local pattern was equal to a table pattern, then
TRAP1 VALUE was added to the local plane’s value. If a local pattern was one
move away from a table pattern, then TRAP2 VALUE was added to the local
plane’s value. If a local pattern was three moves away from a table pattern,
then TRAP3 VALUE was added to the local plane’s value. If a local pattern
was four moves away from a table pattern, then TRAP4 VALUE was added to
the local plane’s value. If a local pattern was more than four moves away from
a table pattern, then the local plane’s value was not changed. A maximum of
four moves were used to change local patterns into level one traps since a level
one trap requires four stones. Polynomial evaluation was not used by Stage 2
GENERAL. The C code fragment in Figure 7 performs the heuristic evaluation
for Stage 2 GENERAL.

13

Figure 7

short a_local; /* Alpha local plane */

short b_local; /* Beta local plane */

short a_table; /* Alpha table plane */

short b_table; /* Beta table plane */

int f_equal; /* are the planes equal? */

if (((a_local | b_local) & b_table) == 0)

{

switch (bit_count(a_local & a_table))

{

case 4: /* 1 move away from a trap */

b_value = TRAP1_VALUE;

break;

case 3: /* 2 moves away from a trap */

b_value = TRAP2_VALUE;

break;

case 2: /* 3 moves away from a trap */

b_value = TRAP3_VALUE;

break;

case 1: /* 4 moves away from a trap */

b_value = TRAP4_VALUE;

break;

defaultl: /* no trap */

b_value = 0;

break;

}

}

4 Analysis

4.1 Introduction

The final task in the research was to determine the relative capabilities of each
learning technique. This was done by conducting contests between different
combinations of heuristics. Each contest consisted of 125 tournaments. Each
tournament consisted of two games, such that each player took turns going first.
The players were assigned different coefficients for each tournament. The coef-
ficients were uniformnly distributed as follows. As previously shown, the max-

14

imum value returned by POLY could not exceed MAX POLY VALUE. Thus
the maximum allowable value of a single coefficient was given by:

MAX_COEFF = MAX_POLY_VALUE < NUM_COEFF

where:

MAX_COEFF = 3

The number of different coefficient values was fixed at 5. Thus there were
(5 x 5 x 5 = 125) different coefficient combinations. Five different coefficient
values also gave a coefficient interval size of:

INVERVAL = MAX_COEFF < 5

The coefficient values used were thus INVERVAL, (2 x INTERVAL), (3 x
INTERVAL), (4 x INTERVAL), and (5 x INTERVAL). Each player was assigned
scores as indicated in Figure 8.

Figure 8

Player didn’t start the game and won. 5
Player started the game and won. 4
Player didn’t start the game and tied. 3
Player started the game and tied. 2
Player didn’t start the game and lost. 1
Player started the game and lost. 0

Each tournament’s score was obtained by subtracting the second player’s
scores from the first player’s scores and was thus tallied as follows:

A1 - B1 + A2 - B2

where:

A1 = first player’s score for game 1.

B1 = second player’s score for game 1.

A2 = first player’s score for game 2.

B2 = second player’s score for game 2.

Freund and Walpole [2] have shown that for the null hypothesis (H0 : δ =
0) the estimated variance is given by:

(Ŝd̄)
2 =

∑
d2−nd̄2

(n−1)n

where:

15

d = tournament score.

d̄ = average tournament score.

n = number of tournaments in a contest.

Plugging in the value of n we have:

(Ŝd̄)
2 =

∑
d2−(125×d̄2)

15,500

Freund and Walpole also defined the test statistic to be:

|d̂− δ|
ŝd̄

Plugging in the value of δ we have:

|d̂|
ŝd̄

The critical value of t was defined (by Freund and Walpole) to be:

t(1−σ)/2,n−1

where:

tσ = the significance level of the test.

If we use a significance level of 95%, then we have (by Freund and Walpole):

t.475,124 = 1.96

If we use a significance level of 99%, then we have (by Freund and Walpole):

t.495,124 = 2.58

Freund and Walpole also showed that (H0 : δ = 0) could be rejected if the
test statistic was greater than 1.96. If the test statistic was greater than 1.96 and
not greater than 2.58, then the probability of rejecting a true hypothesis was .05.
And if the test statistic was greater than 2.58, then the probability of rejecting
a true hypothesis was .01. Kmenta [4] adopted the following terminology. If
the test statistic is less than 1.96, then results are significantly equal. If the
test statistic is between 1.96 and 2.59, then results are significantly unequal.
And if the test statistic is greater than 2.58, then the results indicate that the
difference is highly significant.

16

4.2 Playoff Results

The first set of contests were held to determine if polynomial learning (versions
A and B) resulted in a significantly increased winning ability. Both versions
of polynomial learning were applied to various heuristic combinations. As pre-
viously stated, coefficient values were uniformly distributed for each learning
series. Once a particular series was complete, a contest was held between the
original (or unexperienced) heuristic and the resulting (or experienced) heuris-
tic. The difference was that the original heuristic used the original coefficient
values and the resulting heuristic used the coefficient values that were the result
of the learning series. For example, assume that the heuristic combination was
polynomial with aggression and we were testing polynomial version A. Then
a series, using learning technique A, was applied to the heuristic combination
- polynomial with aggression. A contest was then held between player one,
which used polynomial with aggression and the original coefficient values, and
player two, which used polynomial with aggression and the coefficient values
that were output from the learning series. Table 1 gives the resulting average
tournament scores and test statistics for contests held between experienced and
unexperienced polynomial heuristics. The rows are in order of increasing test
statistic.

The second set of contests were held to compare polynomial learning version
A to polynomial learning version B. Both versions were given the same initial
coefficient values. The contests were held using coefficient values obtained from
the learning series. Table 2 gives the resulting average tournament scores and
test statistics. The rows are in order of increasing test statistic.

The third set of contests were held to compare polynomial learing to polyno-
mial learning with aggression. Table 3 gives the resulting average tournament
scores and test statistics. The rows are in increasing test statistic.

The fourth through ninth set of contests were held to compare polynomial
learning to Stage 1 pattern table lookup. The following six tables give the
resulting average tournament scores and test statistics. The rows are in order
of increasing test statistic.

The tenth set of contests were held to compare Stage 2 Generalization to all
other heuristic combinations. Table 10 gives the resulting average tournament
scores and test statistics.

The final set of contests were held to compare Stage 2 Generalization with-
out aggression to Stage 2 Generalization with aggression. Table 11 gives the
resulting average tournament scores and test statistics.

For all tables, Figure 9 gives the definitions for the test symbols.

5 Conclusions

5.1 Acknowledgements

I would like to thank Dennis F. Cudia for his assistance and quidance in writing
this thesis. It was Dr. Cudia who first presented the idea of applying a statistical

17

Figure 9

P = polynomial without aggression.
A = polynomial with aggression.
P1 = level one of pattern table and polynomial without aggression.
A1 = level one of pattern table and polynomial with aggression.
P2 = level one and two of pattern table and polynomial without aggression.
A2 = level one and two of pattern table and polynomial with aggression.
*.A = polynomial version A.
*.B = polynomial version B.

Polynomial Learning
Contest Unexperienced Experienced Average Score /

Test Statistic

1 P2 P2.B 0.13/0.282
2 A2 A2.A -0.06/1.000
3 P1 P1.A 0.16/1.679
4 A1 A1.A 0.32/2.555
5 P2 P2.A -0.64/3.284
6 P P.A -0.74/4.002
7 A1 A1.B -2.56/4.610
8 A2 A2.B 3.14/6.420
9 A A.A -4.38/10.319
10 A A.B -4.38/10.319
11 P P.B -4.70/12.281
12 P1 P1.B -4.32/13.236

Table 1:

analysis to learning techniques. Therefore, his contribution to this research was
invaluable.

5.2 Programming Details

Table 12 and Table 13 give approximate sizes of the routines used in this project
and by Samuel’s Checkers programs.

The Alpha-Beta routine, used by Score-Four, was capable of making 12
moves per millisecond. Table 14 and Table 15 give the approximate computation
times for the Score-Four routines.

There are a couple of interesting points to made about the results in table 14.
First, Stage 1 Generalization with Polynomial was quicker than simple Stage 1
Generalization. This is the result of simple Stage 1 Generalization only returning
values for planes that are 1 and 2 moves away from a trap. When Polynomial is
used with Stage 1 Generalization, then the Polynomial heuristic is applied when
the Stage 1 Generalization heuristic does not find a trap. Stage 1 Generalization

18

Polynomial A vs. Polynomial B
Contest Version A Version B Average Score /

Test Statistic

1 P2 P2 0.64/1.366
2 A1 A1 -2.69/4.934
3 A2 A2 3.20/6.539
4 A A -4.19/9.843
5 P1 P1 -4.22/13.240
6 P P -4.83/13.583

Table 2:

Polynomial vs. Aggression
Contest Polynomial Agression Average Score /

Version Version Test Statistic

1 P.B A.B 0.64/1.353
2 P A -0.51/1.782
3 P.A A.A -0.77/2.351
4 P1.A A1.A 1.79/5.072
5 P1 A1 1.79/5.203
6 P2.A A2.A -1.47/5.288
7 P2 A2 -1.79/5.983
8 P1.B A1.B 3.10/6.188
9 P2.B A2.B -3.33/7.775

Table 3:

Stage 1 Generalization vs. Polynomial (unexperienced)
Contest Generalization Average Score /

Heuristic Test Statistic

1 2 0.93/1.580
2 1 -0.83/2.232
3 A2.A 1.01/2.596
4 A2 1.12/2.729
5 P2 1.98/4.375
6 P2.A 2.11/4.612
7 A2.B 2.08/5.230
8 A1.A 2.18/5.272
9 A1 2.21/5.384
10 P1 2.05/6.214
11 P1.A 2.21/6.981
12 P2.B 3.33/7.732
13 A1.B 4.22/10.573
14 P1.B 5.63/17.011

Table 4:

19

Stage 1 Generalization vs. Aggression (unexperienced)
Contest Generalization Average Score /

Heuristic Test Statistic

1 A2 0.74/1.452
2 A2.A 0.74/1.452
3 2 -1.25/2.503
4 P2 1.57/3.885
5 P2.A 1.57/3.885
6 1 2.62/4.968
7 A2.B 2.66/6.418
8 A1 2.18/7.261
9 A1.A 2.21/7.458
10 P2.B 3.84/9.092
11 P1.A 3.65/9.332
12 P1 3.74/10.162
13 A1.B 4.64/10.567
14 P1.B 6.30/21.865

Table 5:

Stage 1 Generalization vs. Polynomial (Version A)
Contest Generalization Average Score /

Heuristic Test Statistic

1 2 0.42/0.685
2 1 -0.90/2.615
3 A2.A 1.25/2.857
4 A2 1.28/2.960
5 P2 1.95/4.048
6 A1.A 1.86/4.391
7 A1 1.89/4.492
8 P2.A 2.14/4.615
9 P1 1.92/5.617
10 A2.B 2.34/5.706
11 P1.A 1.98/6.262
12 P2.B 3.65/8.708
13 A1.B 4.32/10.793
14 P1.B 5.60/17.789

Table 6:

20

Stage 1 Generalization vs. Polynomial (Version B)
Contest Generalization Average Score /

Heuristic Test Statistic

1 A1.B 0.19/0.423
2 P2.B 0.35/1.045
3 P2.A -0.48/1.199
4 P2 -0.58/1.457
5 A2 -0.74/1.617
6 A2.A -0.77/1.676
7 P1.A -1.34/2.474
8 P1 -1.44/2.656
9 A2.B 1.82/3.965
10 A1.A -2.78/6.002
11 A1 -2.82/6.197
12 P1.B 2.69/7.294
13 1 -4.22/10.007
14 2 -5.92/14.001

Table 7:

Stage 1 Generalization vs.
Polynomial with Aggression (Version A)

Contest Generalization Average Score /
Heuristic Test Statistic

1 A2 0.77/1.514
2 A2.A 0.80/1.569
3 2 -1.38/2.729
4 P2 1.66/4.196
5 P2.A 1.66/4.196
6 1 2.62/4.969
7 A1 1.79/6.201
8 A1.A 1.79/6.444
9 A2.B 2.69/6.502
10 P1.A 3.20/8.079
11 P1 3.30/8.925
12 P2.B 4.00/9.722
13 A1.B 4.61/10.402
14 P1.B 6.18/20.150

Table 8:

21

Stage 1 Generalization vs.
Polynomial wht Aggression (Version B)

Contest Generalization Average Score /
Heuristic Test Statistic

1 1 -0.38/0.646
2 A2 -0.86/1.684
3 A2.A -0.86/1.684
4 P2.B 0.74/1.685
5 A2.B 1.15/2.044
6 P1 -1.28/2.203
7 A1.B 0.67/2.408
8 P1.A -1.60/2.793
9 A1 -1.60/3.031
10 A1.A -1.86/3.522
11 P2 -1.86/3.589
12 P2.A -1.98/3.806
13 P1.B 2.69/5.193
14 2 -4.99/12.889

Table 9:

with Polynomial thus returns values for planes that are 1, 2, 3, and 4 moves
away from a trap. The result is that Stage 1 Generalization with Polynomial
experiences more pruning in the Alpha-Beta search tree, thus requiring less
moves to be made by the Alpha-Beta look-ahead procedure.

Another interesing point is that Aggression is quicker than Polynomial no
matter what the heuristic combination. This is a result of the aggression factor
forcing the Polynomial heuristic not to be applied equally to Alpha and Beta.
This results in the player that is ahead playing more aggressively - which leads
to an increase in search tree pruning.

Samuel’s Checkers program usually requires 30 seconds to select a move.
Table 16 gives the approximate computation times for Samuel’s checkers playing
program.

It is difficult to compare the sizes of the two games since Score-Four was
written in C and Checkers was written in assembler. But the Score-Four exe-
cutable is significantly larger than the Checkers executable. This size difference
can be partially accounted for by the use of assembler in the Checkers game.
Most of the difference though, is due to the greater complexity of Score-Four.
This complexity is a result of the Score-Four board consisting of three dimen-
sions as apposed to the two dimensional Checkers board. Thus, checking for
a win in Score-Four requires the examination of as many as seven planes. In
Checkers, a single counter can be used to indicate a win.

Even though Score-Four is more complex than Checkers, the Score-Four
Alpha-Beta routine is about 18 times as fast as the Checkers Alpha-Beta routine
(12 moves per millisecond vs. 1 move in 1.5 milliseconds). And the Score-

22

Stage 2 Generalization vs.
All Other Heuristic Combinations

Contest Type 1 Type 2 without Type 2 with
Heuristic Aggression Aggression

Average / Average /
Test Statistic Test Statistic

1 P -0.75/8.955 -0.62/5.176
2 P.A -0.79/9.376 -0.63/5.292
3 P.B -0.87/9.048 -0.87/8.280
4 A -1.42/15.208 -1.03/11.638
5 A.A -1.42/15.208 -1.02/11.453
6 A.B -0.92/7.667 -1.10/11.801
7 1 -2.00/∞ -2.00/∞
8 2 -2.00/∞ -2.00/∞
9 P1 -0.75/8.955 -0.62/5.176
10 P1.A -0.79/9.376 -0.63/5.292
11 P1.B -0.87/9.048 -0.87/8.279
12 A1 -1.42/15.208 -1.03/11.638
13 A1.A -1.42/15.208 -1.02/11.453
14 A1.B -0.92/7.667 -1.10/11.801
15 P2 -0.75/8.955 -0.62/5.176
16 P2.A -0.79/9.376 -0.63/5.292
17 P2.B -0.87/9.048 -0.87/8.279
18 A2 -1.42/15.208 -1.03/11.638
19 A2.A -1.42/15.208 -1.02/11.453
20 A2.B -0.92/7.667 -1.10/11.801

Table 10:

Type 2 Generalization vs.
Type 2 Generalization with Aggresion
average score -0.46
test statistic 4.391

Table 11:

23

Approximate Size of Score-Four Routines

Basic Score-Four playing routines. 260 C instructions
Alpha-Beta move routines. 1,650 C instructions
Polynomial heuristic routines. 100 C instructions
Aggression routines. 460 C instructions
Other heuristic routines. 250 C instructions
Polynomial learning routines. 230 C instructions
Statistical routines. 130 C instructions
Playoff routines. 170 C instructions
Total for Score-Four using 3,250 C instructions
polynomial heuristic.

Generalization heuristic routines. 30 C instructions
Generalization learning routines. 220 C instructions
Total for Score-Four using 3,500 C instructions
polynomial and generalization
heuristics.

Tables and constants for basic play. 60 words
Generalization table space. 1,440 words
Size of Score-Four executable. 18,700 words

Table 12:

Approximate Size of Checkers Routines

Basic Checker playing routine. 1,100 assembler instructions
Input, move verification, and output. 1,400 assembler instructions
Game starting and terminating routines. 600 assembler instructions
Loaders, table generators, dumping, etc. 850 assembler instructions
Statistical and analytical routines. 700 assembler instructions
Polynomial learning routine. 650 assembler instructions
Total for Checkers using 5,350 assembler instructions
polynomial heuristic.

Rote learning routines. 1,500 assembler instructions
Total for Checkers using 6,850 assembler instructions
polynomial and rote heuristics.

Tables and constants for basic play. 700 words
Working space for basic play. 2,000 words
Working space for polynomial learning. 500 words
Working space for rote learning. balance of memory

Table 13:

24

Approximate Computation Times for
Score-Four Heuristics (in milliseconds)

Polynomial. 3.1
Polynomial with Aggression. 3.1
Stage 1 Generalization (Level 1). 23.7
Stage 1 Generalization with Polynomial (Level 1). 25.9
Stage 1 Generalization with Polynomial and Aggression (Level 1). 25.9
Stage 1 Generalization (Level 2). 130.9
Stage 1 Generalization with Polynomial (Level 2). 131.9
Stage 1 Generalization with Polynomial and Aggression (Level 2). 125.7
Stage 2 Generalization. 123.8
Stage 2 Generalization with Aggression. 131.9

Table 14:

Approximate Computation Times for Score-Four
Move Selection, Average and Maximum (in milliseconds)

Polynomial. 1.4 4.8
Polynomial with Aggression. 1.2 4.2
Stage 1 Generalization (Level 1). 8.7 77.7
Stage 1 Generalization with Polynomial (Level 1). 8.1 52.9
Stage 1 Generalization with Polynomial and Aggression (Level 1). 6.2 34.2
Stage 1 Generalization (Level 2). 44.8 164.0
Stage 1 Generalization with Polynomial (Level 2). 53.8 344.2
Stage 1 Generalization with Polynomial and Aggression (Level 2). 53.2 293.7
Stage 2 Generalization. 28.3 95.3
Stage 2 Generalization with Aggression. 31.5 147.3

Table 15:

Approximate Computation Times for Checkers
(in milliseconds)

To find all available moves from a given board position. 2.6
To make a single move and find the resulting board position. 1.5
To evaluate a board position (4 terms). 2.4
To find the score for a saved board position (rote learning). 2.3
To evaluate a position (with 16 terms for polynomial learning). 7.5

Table 16:

25

Four Polynomial heuristic is roughly twice as fast as the Checkers Polynomial
heuristic (3.1 vs. 7.5 milliseconds). This speed difference is due to the 3B2 600
being much faster than the machine that Samuel used for his Checkers project.
The 3B2 600 used in this project has a 18 MHz clock and a Math Acceleration
Unit. Samuel used an early IBM uniprocessor (704).

The Score-Four Polynomial and Generalization methods do have advantages
over Samuel’s Polynomial and Signature Table methods. Both POLY and GEN-
ERAL do not rely on skilled opponents to gain significant learning. But POLY
and Stage 1 GENERAL use a minimal number of polynomial terms when com-
pared to the 38 used by Samuel’s methods. Stage 2 GENERAL, on the other
hand, has the additional advantage of not using polynomial evaluation.

GENERAL differs from Findler’s Generalization method in that GENERAL
is able to keep the pattern table small enough so that table lookup can be used
in an Alpha-Beta look-ahead heuristic. Stage 2 GENERAL is an improvement
oever Findler’s Generalization method since it does not rely on polynomial eval-
uation.

5.3 Heuristics

The purpose of this section is to draw conclusions from the eleven playoffs
whose results were presented in Tables 1 through 11 in Section 4 - Analysis.
The following paragraphs are devoted to the results of each playoff.

The first playoff was held to determine if Polynomial (versions A and B)
resulted in a significantly increased winning ability. The results in Table 1
indicate the Polynomial learning did not significantly change the heuristic ability
in the first three contests, since their test statistics were less than 1.96. The
results also show the Polynomial learning resulted in a highly significant winning
ability in contests 5 - 7 and 9 - 12, since their test statistics were greater than
2.58 and their average tournament scores were negative. Table 1 also indicates
that Polynomial learning significantly decreased ability in contest 4, since the
test statistic was between 1.96 and 2.59 and the average tournament score was
positive. Finally, Table 1 indicates that Polynomial learning resulted in a highly
significant decrease in ability on contest 8, since the test statistic was greater
than 2.58 and the average tournament score was positive.

Table 1 shows that Version B resulted in a significant increase in ability when
not used with Stage 1 Generalization (contests 10 and 11) and when used with
Stage 1, Level 1 Generalization (contests 7 and 12). The table also indicates
that Version B did not result in an increased ability when used with Stage 1,
Level 2 Generalization (contest 1 and 8). The seemingly erratic performance of
Version B is explained by remembering that in Stage 1, Level 1 Generalization,
Polynomial is used if there are no Trap 1 matches and in Stage 1, Level 2
Generalization, Polynomial is used when there are no Trap 1 or Trap 2 matches.
Version B thus performed well when Polynomial evaluation played a greater role
in the heuristic.

Table 1 also shows that Version A resulted in a significant increase in ability
when not used with Stage 1 Generalization (contests 6 and 9). The table also

26

indicates that Version A did not result in an increased ability when used with
Stage 1, Level 1 Generalization (contests 3 and 4) and when used with Stage
1, Level 2 Generalization with Aggression (contest 2). Thus Version A also
performed well when Polynomial evaluation played a greater role in the heuristic.

The results from Table 1 thus indicate that Versions A and B differ in their
performance when used with Stage 1, Level 1 Generalization (B did well, A did
not). It can thus be said that Version A was more adversely affected by Stage
1 Generalization than was Version B.

The second playoff was held to compare Polynomial learning Version A with
Polynomial learning Version B. The results in Table 2 indicate that Version A
was significantly similar to Version B in the first contest, since the test statistic
was less than 1.96. The results also show that Version B was highly superior to
Version A in contests 2 and 4 - 6, since their test statistics were greater than
2.58 and their average tournament scores were negative. And finally Table 2
indicates that Version A was hightly superior to Version B in contest 3, since
the test statistic was greater than 2.58 and the average tournament score was
positive.

Table 2 shows that Version B was significantly superior to Version A when
used with Polynomial learning (contests 4 and 6) and Stage 1, Level 1 Gener-
alization (contests 2 and 5). The table also indicates that Version B was not
significantly superior when used with Stage 1, Level 2 Generalization (contests 1
and 3). These results agree with the results from Table 1. Table 1 indicates that
Version A worked well with Stage 1, Level 2 Generalization (Table 1 contests 2
and 5) and that Version B did not work well when used with Stage 1, Level 2
Generalization (Table 1 contests 1 and 8). Table 1 also shows that Version A
did not work well with Stage 1, Level 1 Generalization (Table 1 contests 3 and
4) and that Version B worked well with Stage 1, Level 1 Generalization (Table
1 contests 7 and 12).

The third playoff was held to compare Polynomial learning without Aggres-
sion to Polynomial learning with Aggression. The results in Table 3 indicate
that unexperienced Polynomial was significantly identical to Aggression in the
first two contests, since their test statistics were less than 1.96. The results
also show that Aggression was significantly superior to Polynomial in contest 3,
since the test statistic was between 1.96 and 2.59 and the average tournament
score was negative. The table also shows that Aggression was highly superior
to Polynomial in contests 6, 7, and 9, since their test statistics were greater
than 2.58 and their average tournament scores were negative. And finally, Ta-
ble 3 indicates that Polynomial was highly superior to Aggression in contests
4, 5, and 8, since their test statistics were greater than 2.58 and their average
tournament scores were positive.

Table 3 thus shows that Aggression was signifcantly superior to Polynomial
when used with any version of Stage 1, Level 2 Generalization (contests 6, 7,
and 9). The table also indicates that Aggression was superior to Polynomial
when used with Version A (contest 3). And Table 2 shows that Aggression is
identical to Polynomial when used with unexperienced Polynomial or Version
B (contests 1 and 2). Finally, the table indicates that Polynomial was superior

27

when used with any version of Stage 1, Level 1 Generalization (contests 4, 5,
and 8).

From these results we can conclude that Aggression has a positive affect on
several heuristic combinations and that it only has an adverse affect when used
with Stage 1, Level 1 Generalization. One reason for this might be as follows.
The aggression factor is calculated by applying Polynomial evaluation and not
Stage 1 Generalization. When Polynomial is used with Stage 1 Generalization,
the idea is for Polynomial to lead up to trap patterns, at which point Stage
1 Generalization would kick in. Clearly it is more difficult for Polynomial to
lead to Trap 1 patterns than to Trap 2 patterns. Thus, if Polynomial doesn’t
blend well with Stage 1, Level 1 Generalization, then Aggression would only
exaggerate the problem since Aggression has nothing to do with grap patterns.

The fourth playoff was held to compare unexperienced Polynomial learning
to Stage 1 Generalization. The results in Table 4 indicate that Stage 1 Gen-
eralization was significantly equal to Polynomial in the first contest, since the
test statistic was less than 1.96. The results also show that Polynomial was
significantly superior to Stage 1 Generalization in the second contest, since the
test statistic was between 1.96 and 2.59 and the average tournament score was
negative. And finally, Table 4 indicates that Stage 1 Generalization was highly
superior to Polynomial in the remaining twelve contests, since their test statis-
tics were greater than 2.58 and their average tournament scores were positive.

Table 4 thus shows that Polynomial was significanlty superior to simple Stage
1, Level 1 Generalization (contest 2). The table also indicates that Polynomial
was identical to simple Stage 1, Level 2 Generalization (contest 1). And Table
4 shows that Polynomial is inferior to all forms of Stage 1 Generalization when
used with any version of Polynomial or Aggression (contests 3 through 15). We
can thus conclude that Stage 1, Levels 1 and 2 Generalization are an improve-
ment on unexperienced Polynomial learning as long as some form of Polynomial
is used with the Stage 1 Generalization heurisitic.

The fifth playoff was held to compare unexperienced Polynomial learning
with Aggression to Stage 1 Generalization. The results in Table 5 indicate
that Stage 1 Generalization was significantly equal to Aggression in the first
two contests, since their test statistics were less than 1.96. The results also
show that Aggression was significantly superior to Stage 1 Generalization in
the third contest, since the test statistic was between 1.96 and 2.59 and the
average tournament score was negative. And finally, Table 5 indicates that
Stage 1 Generalization was highly superior to Aggression in the remaining eleven
contests, since their test statistics were greater than 2.58 and their average
tournament scores were positive.

Table 5 thus shows that Aggression was significantly superior to simple Stage
1, Level 2 Generalization (contest 3). The table also indicates that Aggression
was identical to simple Stage 1, Level 2 Generalization (contest 1) and Version
A with Stage 1, Level 2 Generalization (contest 2). And Table 5 shows that
Aggression is inferior to all other forms of Stage 1 Generalization (contests 4
through 14). We can thus conclude that Stage 1 Generalization is not inferior to
Aggression as long as some form of Polynomial is used with the Stage 1, Level

28

2 Generalization heuristic. We can also conclude that Stage 1 Generalization is
superior to Aggression as long as Aggression is not used with the Stage 1, Level
2 Generalization heuristic.

The sixth playoff was held to compare Version A of Polynomial learning to
Stage 1 Generalization. The results in Table 6 indicate that Stage 1 General-
ization was significantly equal to Version A in the first contest, since the test
statistic was less than 1.96. The results also show that Version A was highly
superior to Stage 1 Generalization in the second contest, since the test statis-
tic was greater than 2.58 and the average tournament score was negative. And
finally, Table 6 indicates that Stage 1 Generalization was highly superior to Ver-
sion A in the remaining twelve contests, since their test statistics were greater
than 2.58 and their average tournament scores were positive.

Table 6 thus shows that Version A was significantly superior to simple Stage
1, Level 1 Generalization (contest 2). The table also indicates that Version A
was identical to simple Stage 1, Level 2 Generalization (contest 1). And Table 6
shows that Version A is inferior to all forms of Stage 1 Generalization when used
with any version of Polynomial or Aggression (contests 3 - 14). We can thus
conclude that Stage 1 Generalization is an improvement on Vesion A as long
as some form of Polynomial learning is used with the Stage 1 Generalization
heuristic.

The seventh playoff was held to compare Version B of Polynomial learning
to Stage 1 Generalization. The results in Table 7 indicate that Stage 1 Gen-
eralization was significantly equal to Version B in the first six contests, since
their test statistics were less than 1.96. The results also show that Version B
was significantly superior to Stage 1 Generalization in contest 7, since the test
statistics were between 1.96 and 2.59 and the average tournament score was
negative. The table also shows that Version B was highly superior to Stage 1
Generalization in contests 8, 10, 11, 13, and 14, since their test statistics were
greater than 2.58 and the average tournament scores were negative. And finally,
Table 7 indicates that Stage 1 Generalization was highly superior to Version B
in contests 9 and 12, since their test statistics were greater than 2.58 and their
average tournament scores were positive.

Table 7 thus shows that only Version B with Stage 1, Level 2 Generalization
and Aggression (contest 9) and Version B with Stage 1, Level 1 Generalization
(contest 12) were significantly superior to Version B. All other forms of Stage 1
Generalization were identical to or inferior to Version B (contests 1 - 8, 10, 11,
13, and 14). From these results we can conclude that Version B is not inferior
to unexperienced Stage 1 Generalization, Stage 1, Level 2 Generalization, and
Stage 1, Level 1 Generalization with Aggression.

The eighth playoff was held to compare Version A of Polynomial learning
with Aggression to Stage 1 Generalization. The results in Table 8 indicate that
Stage 1 Generalization was significantly equal to Version A with Aggression
in the first two contests, since their test statistics were less than 1.96. The
results also show that Version A with Aggression was highly superior to Stage 1
Generalization in the third contest, since the test statistic was greater than 2.58
and the average tournament score was negative. And finally, Table 8 indicates

29

that Stage 1 Generalization was highly superior to Version A with Aggression in
the remaining eleven contests, since their test statistics were greater than 2.58
and their average tournament scores were positive.

Table 8 thus shows that Version A with Aggression was significantly superior
to simple Stage 1, Level 2 Generalization (contest 3). The table also indicates
that Version A with Aggression was identical to unexperienced Stage 1, Level 2
Generalization with Aggression (contest 1) and to Version A with Stage 1, Level
2 Generalization and Aggression (contest 2). And Table 8 shows that Version A
with Aggression is inferior to all other forms of Stage 1 Generalization (contests
4 - 14). We can thus conclude that all forms of Stage 1, Level 1 Generalization
are superior to Version A with Aggression. We can also conclude that Stage 1,
Level 2 Generalization is superior to Version A with Aggression as long as some
form of Polynomial without Aggression is used with the Stage 1 Generalization
heuristic.

The ninth playoff was held to compare Version B of Polynomial learning
with Aggression to Stage 1 Generalization. The results in Table 9 indicate that
Stage 1 Generalization was significantly equal to Version B with Aggression
in the first four contests, since their test statistics were less than 1.96. The
results also show that Version B with Aggression was significantly superior to
Stage 1 Generalization in contest 6, since the test statistic was between 1.96
and 2.59 and the average tournament score was negative. The table also shows
that Version B with Aggression was highly superior to Stage 1 Generalization
in contests 8 - 12, and 14, since their test statistics were greater than 2.58
and the average tournament scores were negative. Table 9 also indicates that
Stage 1 Generalization was significantly superior to Version B with Aggression
in contests 5 and7, since their test statistics were between 1.96 and 2.59 and
their average tournament scores were positive. And finally, the table indicates
that Stage 1 Generalization was highly superior to Version B with Aggression
in contest 13, since the test statistic was greater than 2.58 and the average
tournament score was positive.

Table 9 thus shows that Version B with Aggression was significantly inferior
to Version B with Stage 1, Level 2 Generalization and Aggression (contest 5)
and Version B of Stage 1, Level 1 Generalization with or without Aggression
(contests 7 and 13). The table also indicates that Version B with Aggression was
identical to simple Stage 1, Level 1 Generalization (contest 1), Stage 1, Level 2
Generalization with Aggression (both unexperienced and Version A) (contests
2 and 3) and Version B with Stage 1, Level 2 Generalization (contest 4). And
Table 9 shows that Version B with Aggression is superior to all other forms of
Stage 1 Generalization (contests 6, 8 - 12, and 14).

We can thus conclude that Version B with Aggression is not inferior to
unexperienced Stage 1 Generalization, simple Stage 1 Generalization, and Stage
1, Level 2 Generalization. We can also conclude that Version B with Aggression
is not superior to Version B with Stage 1 Generalization.

The tenth playoff was held to compare Stage 2 Generalization to all other
heuristic combinations. The results in Table 10 indicate that Stage 2 General-
ization was highly significantly superior to all other heuristic combinations since

30

the test statistics were greater than 2.58 and the average tournament scores were
positive.

The eleventh playoff was held to compare Stage 2 Generalization without
aggression to Stage 2 Generalization with aggression. The results in Table 11
indicate that Stage 2 Generalization with aggression was highly significantly
superior to Stage 2 Generalization without aggression since the test statistic
was greater than 2.58 and the average tournament score was negative.

The following are my conclusions from the results of eleven of the playoffs.
First, Tables 1 and 2 show that Version A of Polynomial learning only works well
when Stage 1 Generalization is not used in the heuristic. Version B, on the other
hand, provides an improvement both without Stage 1 Generalization and with
Stage 1, Level 1 Generalization. We can thus conclude that Version B provides
a better learning mechanism than Version A. From Table 3 we can conclude
that Aggression provides better results than Polynomial without Aggression as
long as Stage 1, Level 1 Generalization is not used. Tables 4 - 14 show us that
Stage 1 Generalization works well with most heuristic combinations and poorly
with some others. Specifically, the combinations - Version B with Trap 1 and
Aggression, and Version B with Traps 1 and 2, are superior to all combinations
not using Stage 1 Generalization. The fact that all three of these combinations
involve Version B gives added weight to the superiority of Version B over Version
A. From Table 10 we can conclude that Stage 2 Generalization is superior to
all other heuristic combinations. From Table 11 we can conclude that Stage
2 Generalization with aggression is superior to Stage 2 Generalization without
aggression.

6 Open Problems

Samuel presented the idea of dividing the game into stages. The idea is that
there are different strategies for the beginning, middle, and end of the game.
Actually, there could be any number of stages in a game. This concept could
be implemented by using multiple sets of coefficients and pattern tables. Each
set would correspond to a stage in the game. This idea could be implemented
by POLY and GENERAL.

Samuel terminated his learning algorithm after a given number of moves had
been made. That is, he assumed that if a learning strategy was not good enough
to win in say 20 moves, then the game was assumed to end in a draw. This
has the result of choosing strategies that are aggressive and not defensive. This
idea could be implemented by both Versions A and B.

Stage 2 Generalization should be applied to checkers and statistically com-
pared to Samuel’s Table technique. Stage 2 Generalization should be also ap-
plied to Go-Moku and statistically compared to Findler’s Generalization tech-
nique.

31

References

[1] N. V. Findler, “Some new approaches to machine learning,” in IEEE Trans-
actions on Systems Science and Cyberbetics, vol. SSC-5, pp. 173–182, July
1969.

[2] J. E. Freund and R. E. Walpole, Mathematical Statistics. Prentice Hall,
1980.

[3] A. K. Griffith, “A comparison and evaluation of three machine learning
procedures as applied to the game of checkers,” in Artifical Intelligence,
pp. 137–148, Summer 1974.

[4] J. Kmenta, Elements of Econometrics. MacMillian Co., 1986.

[5] A. L. Samuel, “Some studies in machine learning using the game of checkers,”
in IBM Journal, vol. 3, pp. 40–44, 1960.

[6] A. L. Samuel, “Some studies in machine learning using the game of checkers
ii - recent progress,” in IBM Journal, pp. 601–617, November 1967.

32

