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Abstract

Tchebycheff was a Russian mathematician. He did most of his work
on approximation theory in 1894.

The problem that I wish to address is that I want to approximate a
continuous function f defined on an interval [a, b] by a polynomial:

P(x) = CnX
n + Cn−1X

n−1 + ... + C0

I want to evaluate this approximation by minimizing expressions of the
form:

1. max |f(x)− p(x)|

a ≤ x ≤ b

2. max |f(xi)− p(xi)|

1 ≤ i ≤ m

a ≤ xi ≤ b

1 Background

This thesis is submitted in partial fullfillment of the requirements for the degree
of Bachelor’s of Science in Mathematics at Pacific Lutheran University.

1.1 Introduction

Tchebycheff was a Russian mathematician. He did most of his work on approx-
imation theory in 1894.

The problem that I wish to address is that I want to approximate a contin-
uous function f defined on an interval [a, b] by a polynomial:

P(x) = CnX
n + Cn−1X

n−1 + ... + C0
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I want to evaluate this approximation by minimizing expressions of the form:

1. max |f(x)− p(x)|

a ≤ x ≤ b

2. max |f(xi)− p(xi)|

1 ≤ i ≤ m
a ≤ xi ≤ b

A large part of the work of Tchebycheff involved the very special case when
the number of points taken is equal to n+1. This topic is called interpolation.

We know that a straight line having the equation y = ax + b can be passed
through any two points having distinct abscissas.

Similarly, a parabola y = ax2 + bx + c can be passed through any three
points having distinct abscissas.

I would now like to generalize this concept for n +1 points. But I first need
to do some preliminary work.

2 Vandermonde’s Determinant

Theorem:

∏
0≤j<i≤n(Xi −Xj) =

∣∣∣∣∣∣∣∣
1 X0 X2

0 ... Xn
0

1 X1 X2
1 ... Xn

1

. . . ... .
1 Xn X2

n ... Xn
n

∣∣∣∣∣∣∣∣
Proof by induction:

I will first show that Vandermonde’s Determinant (from here on out this
determimiant will be referred to as: DT ) holds for n=1. For n=1 we have:

∣∣∣∣ 1 X0

1 X1

∣∣∣∣ = (X1 −X0)

Therefore DT holds for n=1.

Assuming that DT is true for n=r, I must now prove that DT holds for n=r+1.
For n=r+1 we have:
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∣∣∣∣∣∣∣∣
1 X0 X2

0 ... Xr
0 Xr+1

0

1 X1 X2
1 ... Xr

1 Xr+1
1

. . . ... . .
1 Xr+1 X2

r+1 ... Xr
r+1 Xr+1

r+1

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
1 X0 X2

0 ... Xr
0 Xr+1

0 −Xr+1
0

1 X1 X2
1 ... Xr

1 Xr+1
1 −Xr

1X0

. . . ... . .
1 Xr+1 X2

r+1 ... Xr
r+1 Xr+1

r+1 −Xr
r+1X0

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
1 X0 X2

0 ... Xr
0 0

1 X1 X2
1 ... Xr

1 Xr
1 (X1 −X0)

. . . ... . .
1 Xr+1 X2

r+1 ... Xr
r+1 Xr

r+1(Xr+1 −X0)

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
1 X0 X2

0 ... Xr
0 −Xr

0 0
1 X1 X2

1 ... Xr
1 −Xr−1

1 X0 Xr
1 (X1 −X0)

. . . ... . .
1 Xr+1 X2

r+1 ... Xr
r+1 −Xr−1

r+1X0 Xr
r+1(Xr+1 −X0)

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
1 X0 X2

0 ... 0 0
1 X1 X2

1 ... Xr−1
1 (X1 −X0) Xr

1 (X1 −X0)
. . . ... . .
1 Xr+1 X2

r+1 ... Xr−1
r+1 (Xr+1 −X0) Xr

r+1(Xr+1 −X0)

∣∣∣∣∣∣∣∣
Continuing this process we arrive at:

=

∣∣∣∣∣∣∣∣
1 0 0 ... 0 0
1 (X1 −X0) X1(X1 −X0) ... Xr−1

1 (X1 −X0) Xr
1 (X1 −X0)

. . . ... . .
1 (Xr+1 −X0) Xr+1(Xr+1 −X0) ... Xr−1

r+1 (Xr+1 −X0) Xr
r+1(Xr+1 −X0)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
(X1 −X0) X1(X1 −X0) ... Xr−1

1 (X1 −X0) Xr
1 (X1 −X0)

(X2 −X0) X2(X2 −X0) ... Xr−1
2 (X2 −X0) Xr

2 (X2 −X0)
. . ... . .

(Xr+1 −X0) Xr+1(Xr+1 −X0) ... Xr−1
r+1 (Xr+1 −X0) Xr

r+1(Xr+1 −X0)

∣∣∣∣∣∣∣∣
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= (X1 −X0) multiplied by:

∣∣∣∣∣∣∣∣
1 X1 ... Xr−1

1 Xr
1

(X2 −X0) X2(X2 −X0) ... Xr−1
2 (X2 −X0) Xr

2 (X2 −X0)
. . ... . .

(Xr+1 −X0) Xr+1(Xr+1 −X0) ... Xr−1
r+1 (Xr+1 −X0) Xr

r+1(Xr+1 −X0)

∣∣∣∣∣∣∣∣
= (X1 −X0)(X2 −X0) multiplied by:

∣∣∣∣∣∣∣∣
1 X1 ... Xr−1

1 Xr
1

1 X2 ... Xr−1
2 Xr

2

. . ... . .
(Xr+1 −X0) Xr+1(Xr+1 −X0) ... Xr−1

r+1 (Xr+1 −X0) Xr
r+1(Xr+1 −X0)

∣∣∣∣∣∣∣∣
Continuing this process we arrive at:

= (X1 −X0)(X2 −X0)...(Xr+1 −X0)

∣∣∣∣∣∣∣∣
1 X1 ... Xr−1

1 Xr
1

1 X2 ... Xr−1
2 Xr

2

. . ... . .
1 Xr+1 ... Xr−1

r+1 Xr
r+1

∣∣∣∣∣∣∣∣

=
∏

1≤i≤r+1(Xi −X0)

∣∣∣∣∣∣∣∣
1 X1 ... Xr−1

1 Xr
1

1 X2 ... Xr−1
2 Xr

2

. . ... . .
1 Xr+1 ... Xr−1

r+1 Xr
r+1

∣∣∣∣∣∣∣∣
The matrix on the right is nothing more than Vandermonde’s Determinant

for r variables. In this case the variables have been numbered from 1 to r+1
instead of 0 to r. Thus by my assumption that DT holds for n=r, we have:

=
[∏

1≤i≤r+1(Xi −X0)
] [∏

0≤j<i≤n(Xi −Xj)
]

=
∏

0≤i≤r+1(Xi −Xj)

Therefore DT is true for n = r+1. Thus (by induction) my proof is complete.
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3 Interpolation Theorem

Theorem:

There exists a unique polynomial of degree ≤ n which assumes prescribed
values at n+ 1 distinct points.

Proof:

Let (x0, x1, ..., xn) be the points and (y0, y1, ..., yn) be the prescribed val-
ues. We seek a polynomial p such that p(xi) = yi(i = 0, 1, ..., n). Since the
polynomial is of degree ≤ n, it may be expressed as:

P (X) =
∑n

j=0 CjX
j

Hence our requirement now reads:

P (Xi) =
∑n

j=0 CjX
j
i = Yi(i = 0, 1, ..., n).

Written out in matrix from this becomes:

1 X0 X2
0 ... Xn

0

. . ... . .
1 Xn X2

n ... Xn
n



C0

.

.

.
Cn

 =


Y0
.
.
.
Yn


In this equation the C matrix is unknown while the X and Y matricies are

known.
The determinant of the X matrix equals Vandermonde’s Determinant and

thus has the value:

DT =
∏

0≤j<i≤n(Xi −Xj)

Since each of the Xi’s are distinct, Det 6= 0. Thus the matrix has a unique
solution and my proof is complete.

4 Interpolation Process

I will now seek to asses the interpolation process as an instrument of approxi-
mation. This examination will pertain to our two original expressions:

1. max |f(x)− p(x)|

a ≤ x ≤ b
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2. max |f(xi)− p(xi)|

1 ≤ i ≤ m
a ≤ xi ≤ b

The polynomial p of degree ≤ n which interpolates to f at n+1 points xi,
clearly solves the problem of minimizing the second equation when m = n+1.

I will now ask, will the first expression also be small when p is chosen in this
way. The answer is certainly not if the behavior of f between the interpolating
points is not somehow controlled. It turns out that such control is possible
for functions which possess n+1 continuous derivatives. Before I address this
problem, we need to familiarize ourselves with the Tchebycheff norm, which for
a polynomial y defined on the interval [a,b], is:

||y||T = maxa≤x≤b|y(x)|

To show that this is indeed a norm I must show, for polynomials y and x,
that:

1. ||y|| > 0 (unless y = 0)

2. ||λy|| = |λ| ||y|| (λ is a scalar)

3. ||y + z|| ≤ ||y|| + ||z||

The Tchebycheff norm obviously fits this definition.

5 Theorem 1

Theorem:

If f possesses n continuous derivatives on [a, b]. And if p is the polynomial
of degree < n which interpolates to f at n nodes xi in [a, b],

and if w(x) =
∏

(x− xi), then in terms of the Tchebycheff norm:

||f − p|| ≤ 1
n!
||f (n)|| ||w||

Proof:

I will first show to each y in [a, b] there corresponds a zy ∈ [a, b] such that:

f(y) - p(y) = 1
n!
f (n)(zy)w(y)
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This formula is obvious if y is one of the nodes. Otherwise we put:

φ = f - p - λw

where λ is chosen to make φ(y) = 0. Namely:

φ(y) = f(y) - p(y) - λw(y)

0 = f(y) - p(y) - λw(y)

λ =
f(y)−p(y)
w(y)

It is clear that φ vanishes also at the nodes xi for:

φ(xi) = f(xi) - p(xi) - λx(xi) = 0

Thus φ vanishes in at least n+ 1 points of [a, b], the n nodes and the point
y. Rolle’s theorem states that for f(x) ∈ c[a, b] and f differentiable at each point
of [a, b]. If f(a) = f(b) then there is a point x = β with a < β < b for which
f ′(β) = 0.

Thus since f possesses n continuous derivatives on [a, b], φ′ vanishes at least
once between any two zeros of φ and thus vanishes in at least n points.

Also, φ′′ vanishes at least once between any two zeros of φ′ and thus vanishes
in at least n-1 points. Continuing this argument, we see that φ(n) has at least
one root on the interval [a, b], say at the point zy. By differentiating φ with
respect to x and remembering that y is a fixed point we have:

φ(n) = f (n) - p(n) - λw(n)

And since p is a polynomial of degree < n we have:

φ(n) = f (n) - 0 - λw(n)

And since w(s) = sn + sn−1 + ... we have:

φ(n) = f (n) - λn!

Thus:

f (n)(zy) = λn!

And since:

λ = f(y)−p(y)
w(y)

we have:

f (n)(zy) = [f(y)−p(y)]n!
w(y)
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f(y) - p(y) = 1
n!
f (n)(zy)w(y)

|f(y)− p(y)| = | 1
n!
f (n)(zy)w(y)|

Remember, the preceeding is true for all y ∈ [a, b].

Now assume that:

maxa≤y≤b|f(y)− p(y)| 6= maxa≤y≤b | 1
n!
f (n)(zy)w(y)|

Without loss of generality I can assume that:

maxa≤y≤b|f(y)− p(y)| < maxa≤y≤b | 1
n!
f (n)(zy)w(y)|

Now for α ∈ [a, b] let:

| 1
n!
f (n)(zα)w(α)| = maxa≤y≤b | 1

n!
f (n)(zy)w(y)|

then:

> maxa≤y≤b|f(y)− p(y)|

QED

Thus:

maxa≤y≤b|f(y)− p(y)| = maxa≤y≤b | 1
n!
f (n)(zy)w(y)|

||f(y)− p(y)|| = 1
n!
||f (n)(zy)w(y)||

≤ 1
n!
||f (n)(zy)|| ||w(y)||

≤ 1
n!
||f (n)|| ||w(y)||

A question that is raised in a natural way by the foregoing theorem is how
can we situate the nodes as to optimize the error bound? Since the nodes enter
this formula only in the function w, I must attempt to minimize the norm of w.

I will now prove a relationship which will be immediately useful.
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6 Theorem 2

Theorem: ∑n
k=0Akcos

kθ = cosnθ

With appropriate coefficients Ak, the leading one, An = 2n−1.

Proof by induction:

I will first show that the equation holds for n = 1.

cos(1− θ) = cosθ

= 0 + (1 x cos θ)

=
∑1

k=0Akcos
kθ

The leading coefficient A1 = 1 = 20 = 21−1 = 2n−1. Therefore, the equation
holds for n=1.

I will now assume that the formula is true for n=r and the leading coefficient
Ar = 2r−1. I need to show that the relationship is true for n=r+1. Thus:

cos(r + 1)θ = cos(rθ + θ)

= cosrθcosθ - sinrθsinθ

Since:

= cos(A ± B) = cosAcosB ± sinAsinB

We have:

= 2cosrθcosθ - cosrθcosθ - sinrθsinθ

= 2cosrθcosθ - cos(r - 1)θ

= 2cosθ
∑r

k=0Akcos
kθ −

∑r−1
k=0Bkcos

kθ

=
∑r

k=0 2Akcos
k+1θ −

∑r−1
k=0Bkcos

kθ
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= 2Akcos
r+1θ + 2Ak+1cos

rθ +
∑r−1

k=0(2Ak −Bk)coskθ

=
∑r+1

k=0 Ckcos
kθ

Where (Cr+1 = 2Ar), (Cr = 2Ar−1), and (Ci = 2Ai - Bi) for (0 ≤ i ≤ r−1).
The relationship thus holds for n=r+1. Therefore (by induction), my proof

is complete.

7 Theorem 3

Theorem:

The norm of:

w(x) =
∏n

i=1(X −Xi)

is minimized on [-1, 1] when:

xi = cos[(2i− 1) Π
2n

]

Proof:

Letting:

Tn(x) =
∑n

k=0AkX
k

We have:

Tn(cosθ) = cosnθ

To obtain the roots of Tn we set:

Tn(cosθ) = 0

We thus have:

Tn(cosθ) = cosnθ = 0

nθ = arccos0
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nθ = (2i−1)Π
2

(i = 1,2, ...)

θ = (2i−1)Π
2n

cosθ = cos[(2i− 1) Π
2n

]

Thus the roots of Tn are the xi given above. The polynomial: U = 21−nTn,
is a multiple of W since U and W have the same zeros. The maximum of |U(x)|
on [-1, 1] occurs then at the points:

yi = cosiΠ
n

Since:

Tn(yi) = cosniΠ
n
= cosiΠ = (−1)i

Now if possible, let V be another polynomial of the same form as W, for
which: ||V || < ||U ||. Then:

V (y0) < ||U || = U(y0)

Thus:

V (y0) < U(y0)

and:

V (y0) < ||U || = |U(y1)| = | − 1|

Now:

V (y1) > -1,

Since if:

V (y1) ≤ -1,

Then:

V (y1) ≥ | − 1| = ||U ||

Thus:
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V (y1) > -1 = U(y1)

Continuing this process we see that (U - V) must vanish at least once in each
interval [ (y1, y0), (y2, y1), ... ] for a total of n times. But this is not possible
since V and W have degree n and a leading coefficient of 1. Their difference is
therefore of degree ≤ n.

Thus: ||V || ≥ ||U ||, and W is thus minimized on [-1, 1] when:

xi = cos[(2i - 1) Π
2n
]

I now need to expand this result to apply for the general interval [a, b] to
[-1, 1] where the following serves our purpose:

x = a−2y+b
a−b

Our transformation is continuous except when: a = b, which is an interval
of one point and thus not permitted. Solving for y we have:

x = a−2y+b
a−b

(a - b)x = (a + b) - 2y

2y = (a + b) + (b - a)x

y = 1
2
[(a + b) + (b - a)x] from [-1, 1] → [a, b] .

Now we recall that the zeros of Tn(x) are:

xi = cos[(2i - 1) Π
2n
]

And thus the corresponding interpolation points in [a, b] are:

yi =
1
2
[(b - a)cos[(2i - 1) Π

2n
] + (a + b)]

Therefore, for a given function f of degree ≤ n, which posseses n continuous
derivatives on [a, b], we can construct an approximation p such that the mean
of (f - p) is give by:

||f − p|| ≤ 1
n!
||f (n)|| ||w||

where the norm of w(y) =
∏n

i=1 (y − yi) is minimized on [1, b], when:

yi =
1
2
[(b - a)cos[(2i - 1) Π

2n
] + (a + b)]

For the maximum derivation of
∏n

i=1 (y − yi) from zero in [1, b], we have:

maxa≤y≤b
∏n

i=1 |y − yi|

Now:
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y − yi = 1
2
[(b - a)x + (a + b)] - 1

2
[(b - a)xi + (a + b)]

= 1
2
[(b - a)x + (a + b) - (b - a)xi + (a + b)]

= 1
2
[(b - a)(x - xi)]

= (b−a)(x−xi)
2

Thus:

maxa≤y≤b
∏n
i=1 |y − yi| =

[
(b−a)

2

]n ∏n
i=1 (x− xi)

Remembering that: W(x) = x1−nTn
and that the maximum value of: Tn(x) = 1.
We have:

=
[

(b−a)
2

]n
21−n

=
[

(b−a)
2

]n
1

2n−1

= (b−a)n

22n−1

Clearly Tchebycheff’s polynomial has its limitations as an approximation.
This would tend to show us that the use of the interpolation process as a method
of approximation would be inadequate for many applications. I will not present
a theorem which will introduce an approach which gives much better results.

8 Weierstrass Approximation Theorem

Theorem:

Let f be a continuous function defined on [a, b]. To each ε > 0, there corre-
sponds a polynomial p such that ||f−p|| < ε . Thus: |f−p| < ε for all x ε [a, b].

Proof (by Bernstein):

Bernstein constructed, for a given f ∈ c[1, 1]), a sequence of polynomials
(now called Bernstein polynomials) Bnf by means of the formula:
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(Bnf)(x) =
∑n
k=0 f

(
k
n

)( n
k

)
xk(1− x)n−k

Where:
( n
k

)
is the binomial coefficient: n!

(n−k)!k!
.

For f,g ∈ c[0, 1] we have:

Bn(f + g) =
∑n
k=0 (f + g)

(
k
n

)( n
k

)
xk(1− x)n−k

=
∑n
k=0 f

(
k
n

)( n
k

)
xk(1− x)n−k +

∑n
k=0 g

(
k
n

)( n
k

)
xk(1− x)n−k

= Bnf + Bng

And for α a scalar we have:

Bn(αf) =
∑n
k=0 αf

(
k
n

)( n
k

)
xk(1− x)n−k

= α
∑n
k=0 f

(
k
n

)( n
k

)
xk(1− x)n−k

= α(Bnf)

Bn is thus a linear operator.

By definition, for Bn to be a monotone operator, for:

f,g ∈ c[0, 1]

f ≥ g → Bnf ≥ Bng

Now since n ≥ k and x ∈ [0, 1]:

n!
(n−k)!k!

xk(1− x)n−k ≥ 0

Thus if f ≥ g then:

f
(
k
n

)( n
k

)
xk(1− x)n−k ≥ g

(
k
n

)( n
k

)
xk(1− x)n−k

And therefore:∑n
k=0 f

(
k
n

)( n
k

)
xk(1− x)n−k ≥ ∑n

k=0 g
(
k
n

)( n
k

)
xk(1− x)n−k

Thus Bnf ≥ Bng and therefore Bnf is a monotone operator. I will now
prove a theorem essential to the completion of this proof.
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9 Theorem on Monotone Operators

Theorem:

For a sequence of monotone linear operators Ln on C[1, b], the following
conditions are equivalent:

1. Lnf → f for all f ∈ c[a, b]

2. Lnf → f for the three functions f(x) = 1, x, x2

3. Lnf → 1 and (Lnφt)(t) → 0 in t where φt(x) = (t− x)2

Proof:

(1 → 2) is trivial.

(2 → 3)

Define: fi(x) = xi.

Now:

φt(x) = (t− x)2

= t2 - 2tx + x2

φt = t2f0 - 2tf1 + f2

Lnφt = t2Lnf0 - 2tLnf1 + Lnf2

(Lnφt)(t) = t2(Lnf0)(t) - t2 - 2t(Lnf1)(t) + 2t2 + (Lnf2)(t) - t2

= t2[(Lnf0)(t) - 1] - 2t[(Lnf1)(t) - t] + [(Lnf2)(t) - t2]

≤ t2||Lnf0 − 1|| - |2t|||Lnf1 − t|| + ||Lnf2 − t2||

→ t2||1− 1|| - |2t|||t− t|| + ||t2 − t2|| = 0

(3 → 1)

We begin by selecting σ such that:

|x− y| < σ → |f(x)− f(y)| < ε (σ > 0, ε > 0)

Now set α = 2||f ||σ−2 and let t be an arbitrary but fixed point of [1, b]. If
|t− x| < σ, then |f(t)− f(x)| < ε. Whereas if |t− x| ≥ σ, then:
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|f(t)− f(x)| ≤ |f(t)| + |f(x)|

≤ 2||f ||

≤ 2||f || (t−x)2

σ2

= ασt(x)

Thus for all x, the following inequality is statisfied:

−ε - ασt(x) ≤ f(t) - f(x) ≤ ε + ασt(x)

Let f0(x) = 1. Then we have:

−εf0 - ασt ≤ f(t)f0 - f ≤ εf0 + ασt

By the linearity and monotonicity of Ln we have:

−ε(Lnf0)(t) - α(Lnσt) ≤ f(t)(Lnf0)(t) - (Lnf)(t) ≤ ε(Lnf0)(t) + α(Lnσt)(t)

This yields:

|f(t)(Lnf0)(t) - (Lnft)(t)| ≤ ε(Lnf0)(t) + α(Lnσt)(t) ≤ ε||Lnf0|| +
α(Lnσt)(t)

Since Lnf0 → f0 and (Lnσt)(t) → 0 we have that the above expression goes
to |f(t)− (Lnf)(t)| < ε.

10 Proof of the Weierstrass Theorem

I am first going to prove the theorem for the interval [0, 1] and then extend it
to a given interval [a, b]. I will show that for any f ∈ c[0, 1]. The Bernstein
polynomials Bnf converge to f. the linearity and monotonicity of Bn have
already been mentioned. By the theorem on monotone operators it will suffice
to show that Bnf → f for f(x) = 1, x, and x2.

Now applying the binomial theorem, which states that:

∑n
k=0

( n
k

)
akbn−k = (a+ b)n

We have:
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(Bn1)(x) =
∑n

k=0

( n
k

)
xk(1− x)n−k = [x+ (1− x)]n = 1

And for the function f(x) = x:

(Bnf)(x) =
∑n
k=0

k
n

( n
k

)
xk(1− x)n−k

=
∑n
k=1

k
n

( n
k

)
xk(1− x)n−k

=
∑n
k=1

kn!
n(n−k)!k!

xk(1− x)n−k

=
∑n
k=1

(n−1)!
[n−1−(k−1)]!(k−1)!

xk(1− x)n−k

= x
∑n−1

k=0

( n− 1
k

)
xk(1− x)n−1−k

= x [x+ (1− x)]n−1 = x

For the function f(x) = x2 we have:

(Bnf)(x) =
∑n
k=0

(
k
n

)2( n
k

)
xk(1− x)n−k

=
∑n
k=1

k
n

(n−1)!
[n−1−(k−1)]!(k−1)!

xk(1− x)n−k

=
∑n
k=1

k
n

( n− 1
k − 1

)
xk(1− x)n−k

=
∑n
k=1

(k−1)
n

( n− 1
k − 1

)
xk(1− x)n−k +

∑n
k=1

1
n

( n− 1
k − 1

)
xk(1− x)n−k
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= (n−1)
n

∑n
k=1

(k−1)
(n−1)

( n− 1
k − 1

)
xk(1− x)n−k + 1

n∑n
k=1

1
n

( n− 1
k − 1

)
xk(1− x)n−k

= (n−1)
n

∑n
k=2

(
k−1
n−1

)(
(n−1)!

[n−1−(k−1)]!(k−1)!

)
xk(1− x)n−k + 1

n∑n
k=1

1
n

( n− 1
k − 1

)
xk(1− x)n−k

= (n−1)
n

∑n
k=2

(
(n−2)!

[n−2−(k−2)]!(k−2)!

)
xk(1− x)n−k + 1

n∑n
k=1

1
n

( n− 1
k − 1

)
xk(1− x)n−k

= (n−1)
n

∑n
k=2

( n− 2
k − 2

)
xk(1− x)n−k + 1

n∑n
k=1

( n− 1
k − 1

)
xk(1− x)n−k

= (n−1)
n

∑n−2
k=0

( n− 2
k

)
xk+2(1− x)n−(k+2) + 1

n∑n−1
k=0

( n− 1
k

)
xk+1(1− x)n−(k+1)

= (n−1)x2

n

∑n−2
k=0

( n− 2
k

)
xk(1− x)n−2−k + x

n∑n−1
k=0

( n− 1
k

)
xk(1− x)n−1−k

= (n−1)x2

n
[x+ (1− x)]n−2 + x

n
[x+ (1− x)]n−1

= (n−1)x2

n
+ x

n
→ x2

I will extend this theorem to apply to an arbitrary interval [a, b]. That is,
for a function f ∈ c[a, b].

Cleary; g(x) = a + x(b - a) is continuous on [0, 1]
and on [0, 1], g(x) = [a, b]. Thus for σ(x) = fg, σ(x) is continuous on [0, 1].
Therefore, the Bernstein polynomials converge to σ(x) on [0, 1]. But:

18



σ(x) = f [a = x(b− a)] (x ∈ [0, 1])

= f(y) (x ∈ [a, b])

Thus, the Bernstein polynomials converge to f on [a, b].
This theorem would serve to indicate that a polynomial constructed from a

sequence of polynomials would satisfy our requirements for an approximation
to f ∈ c[a, b].
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