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Abstract

Swift is a powerful and popular Cloud Storage im-
plementation. The Swift protocol consists of the hi-
erarchy of Cloud Items: {Account, Container, Ob-
ject}. Each Cloud Item is stored on multiple Stor-
age Pairs: {Server, Device}. Swift does not main-
tain device construction and parity. This critical
infrastructure is left to the Administrator to man-
age outside of Swift. In this paper, we expand Swift
to include device management: Swift RESAR. This
extension greatly empowers Swift Administrators in
managing large numbers of cloud devices. Swift uses
the Python programming language and Swift RESAR
extends Swift in a painless manner by also using
Python. This paper also presents a new approach to
processing data streams that is highly scalable: the
stream star schema. This new type of star schema is
proposed to accommodate high data stream rates: giga
bits per second, by reducing insertion time to a con-
stant. An experimental implementation of both star
schema types on the RESAR data stream shows that
stream star schema insertion performance is constant
and superior to star schema insertion performance by
a factor of over 1,000, which is 3 orders of magni-
tude. Our new database does not only excel in in-
sertion performance, it also is superior in query per-
formance. The minimum query time for the RESAR
star schema is over 60 times faster than the MySQL
database. The maximum query time for the RESAR
star schema is over 562 times faster than the MySQL
database.

1 Introduction

Swift is a Cloud Storage implementation, that is free
open source software released under the terms of the
Apache License. This project is managed by the
OpenStack Foundation, a non-profit corporation es-
tablished in September 2012. Swift is gaining wide
popularity in that over 150 companies are currently
participating in this project [7].

The Swift protocol consists of the hierarchy of
Cloud Items: {Account, Container, Object} [5].
That is, Swift access is initiated by an Account, which
contains Containers, which contains Objects. Thus
a Swift Object is uniquely identified by the 3-tuple:
{Account, Container, Object}.

Each Cloud Item is stored on multiple Storage
Pairs: {Server, Device}. This mapping informa-
tion is stored in Rings, which are actually Consistent
Hashes.

For Storage Pairs, Devices are actually Logical
Unit Numbers (LUNs). Thus, Swift is not concerned
with LUN parity and reliability. That is, it does not
identify and store LUN construction. Swift thus can-
not describe how a LUN was created: the number
of disk devices used by the LUN and the LUN type
(mirrored or parity). It is up to the Swift Adminis-
trator to manage LUN construction on each device
host, outside of Swift.

This presents tremendous problems when dealing
with millions of devices in a cloud. For instance,
problems with the tracking and organization of LUN
construction. How should LUNs be created to mini-
mize the effects of device failures? How should LUNs
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be created to optimize LUN performance? How
should LUNs be modeled to allow mathematical anal-
ysis?

In this paper, we expand Swift to include LUN
construction. This not only increases the scope of
the Swift Project but greatly empowers the Swift
Administrator by simplifying LUN construction and
management. This is of great significance when man-
aging millions of devices in a Storage Cloud. An ad-
ditional goal in this project was to minimize changes
to the Swift code base. This greatly enhances new
feature implementation. Additionally, this expansion
brings LUN construction out of the shadows and into
the open source lime light. This expansion will thus
prove beneficial to the entire OpenStack community.

In addition, we leverage previous work done by Ig-
nacio Corderi [1] on the subject of Cloud Device
Management. Mr. Corderi describes his research
as RESAR: Robust, Efficient, Scalable, Autonomous,
and Reliable storage.

This paper is thus the application and implemen-
tation of an efficient, scalable storage methodology to
the OpenStack Swift Project. We therefor refer to it
as the Swift RESAR project.

2 RESAR

RESAR essentially is a mapping algorithm, that is
centered around LUN construction [1]. Devices are
segmented into Disklets, were there is a single disklet
size for all devices in a given cloud. In RESAR, LUNs
are referred to as Reliability Groups. A Reliability
Group is a collection of data disklets and a single
parity disklet. Data disklets can be members of mul-
tiple reliability groups. Parity disklets can only be
in a single reliability group. So RESAR keeps track
of devices, disklets, and reliability groups. Tradition-
ally, disklets and reliability groups are organized into
a grid, where each row and column defines a separate
reliability group. The nodes on the bottom and right
edges are parity disklets. All other nodes are data
disklets. RESAR is unique in that it also organizes
disklets and reliability groups into a mathematical
dual form. Each reliability group can thus be iden-
tified as a vertex and all connecting edges, and each

data element can be identified as an edge connecting
two vertices. This approach allows the application of
various graph techniques like coloring. Thus RESAR
provides optimal device organization that is scalable.

Figure 1 provides an example of how reliability
groups are organized and how a graph can be built
for coloring to support data layout across disks. In
the grid on the left data disklets numbered 1-16 and
parity disklets lettered a-h. Each data disklet is in
two reliability groups (the row and columns in the
grid). Each reliability group has one and only one
parity disklet. On the right hand side of Figure 1
the same data is expressed in its mathematical dual
form. Each reliability group can be identified as a
vertex and all connecting edges, and each data el-
ement can be identified as an edge connecting two
vertices. We can observe that data element 12 pro-
tected by parity blocks c and h can be represented as
vertices c and h connected by edge 12.
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Figure 1: Left: RESAR small two-failure resilient
array. Right: its design theoretical dual.

3 Swift RESAR

We would now like to describe how RESAR was im-
plemented in Swift. During our research, we real-
ized that there were essentially two approaches avail-
able. The first approach emphasized leveraging ex-
isting code in the Python community. Swift is imple-
mented in the Python programming language. So the
Swift RESAR project is also implemented in Python.
So for the first approach, the primary goal was to
minimize the amount of new code thus resulting in
timely results. On the other hand, the second ap-
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proach emphasized performance. In this approach,
we were willing to write new code as long as it re-
sulted in better RESAR performance.

4 RESAR MySQL

We will now describe the first approach to Swift
RESAR. During this research, we quickly realized
that the RESAR metadata (devices, disklets, reli-
ability groups) needed to be stored in a database.
A database is an established and optimal manner of
storing persistent data that needs to be updated and
queried. So for the first approach we chose MySQL
[4] as the database since it is well established, free,
easy to install, and has a Python interface. Figures 5
- 9 present the RESAR MySQL database. So the
MySQL RESAR database consisted of five tables:
{MetaData, Device, Disklet, ReliabilityGroup, Reli-
abilityGroupsDisklets}.

The MetaData Table contains a single row and is
used to store the attributes: {CreateTime, Disklet-
Size}.

The MetaData Table is created when the database
is initialized and is not changed henceforth.

The Device Table contains an entry for each de-
vice in a cluster. Its attributes are: {ID, Create-
Time, HostName, DeviceName, DeviceStart, Device-
Size, InUse, NumDisklets}.

A device is uniquely identified by the tuple:
{HostName, DeviceName}. To facilitate optimal de-
vice lookup, HostName and DeviceName are indexed.
The InUse attribute allows a device to be taken out
of service for maintenance purposes.

The ID attribute is required so that each Device
Table row can be referenced from the Disklet and
ReliabilityGroupsDisklets Tables.

The Disklet Table is used to keep track of disklet
use in the cluster. Thus each device (in the clus-
ter) results in multiple Disklet Table entries. The
Disklet Table attributes are: {ID, DeviceID, Devi-
ceIndex, Type}.

The ID attribute is required so that each Disklet
Table row can be referenced from the Reliability-
GroupsDisklets Table. A disklet is uniquely identi-
fied by the tuple: {DeviceID, DeviceIndex}. To fa-

cilitate optimal device lookup, DeviceID is indexed.
The Type attribute identifies that a disklet is used
for ”parity” or ”data”, but not for both. If a disklet
is not used by a reliability group, then its type is ir-
relevant and the Type attribute is thus set to ”none”.

The ReliabilityGroup Table is used to manage reli-
ability groups in the cluster. Its attributes are: {ID,
CreateTime, NumDisklets, InUse}.

The ID attribute is required so that each Reliabil-
ityGroup Table row can be referenced from the Re-
liabilityGroupsDisklets Table. The InUse attribute
allows a reliability group to be taken out of service
for maintenance purposes.

The ReliabilityGroupsDisklets Table is used to
map disklets to reliability groups. Its attributes
are: {ID, ReliabilityGroupID, DiskletID, Disklet-
Type, DeviceID}.

The ID attribute is required so that each Relia-
bilityGroup Table row can be externally referenced.
The DiskletType attribute indentifies that a disklet is
used for ”parity” or ”data”, but not for both. A Re-
liabilityGroupsDisklets Table entry is uniquely iden-
tified by the tuple: {ReliabilityGroupID, DeviceID,
DiskletID}. To facilitate optimal table lookup, Relia-
bilityGroupID, DiskletID, and DeviceID are indexed.

It is of the utmost importance to employ indexing
for many of the database attributes. Indexing helps
optimize table query performance.
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Figure 2: MySQL construction time for a given num-
ber of disk devices.

Figure 2 shows database construction time for a
given number of disk devices. So for a cloud cluster
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of 1 million devices, database construction time was
(on average) 0.12 seconds for a single device and re-
liability group. It required over 34 hours to create
the entire database of 1 million devices and 1 million
reliability groups.

We also tested query times for the same MySQL
database. Table 1 presents the results. The mini-
mum query time was more than 0.0002 seconds. The
maximum query time was less than 0.0005 seconds.

We sincerely hoped that this database creation
time was excessive and that the second RESAR
Swift approach would greatly improve database per-
formance.

5 Star Schema

We were thus highly motivated to pursue the second
RESAR Swift approach. That is, focus on perfor-
mance and thus be willing to write new code. So we
needed to create a new kind of database that was
optimized for database construction.

OnLine Transaction Processing (OLTP) commonly
uses relational databases to perform transactions [2,
3]. Many relational databases are implemented as
star schema databases. A star schema is optimized to
minimize string space - all string attributes are stored
in separate dimension tables. Each dimension table
is sorted to optimize query performance. Dimension
table insertion time thus depends on the table size
and is O(log n) where n is the number of records in
a table. Star schema insertion time then, is the sum
of all dimension table insert times O(

∑
1≤i≤l(log ni))

where l is the number of attributes in the database
and ni is the number of values for attribute i.

We will no describe the RESAR star schema. The
MetaData Table is a stand alone fact table in that
it does not contain external references nor is it ex-
ternally referenced. The fact tables are Disklet and
ReliabilityGroupsDisklets. The Disklet Table ref-
erences the Device Table. The ReliabilityGroups-
Disklets Table is the most complicated and thus
most interesting in that it references multiple tables:
{ReliabilityGroup, Device, Disklet}. This schema
thus shows that the dimension tables in the RESAR
star schema are: {ReliabilityGroup, Device, Disklet}.

But these dimension tables are NOT typical star
schema string dimensions. They are in fact com-
plex data structures. This would seem to indicate
that string manipulation was not the cause of poor
dimension table performance.

So what was causing the poor insertion perfor-
mance? We theorized that the problem lies in how
database attributes are indexed. Essentually all of
the tables needed some of the attributes to be indexed
so that query performance was reasonable. For exam-
ple, a common query on the Device Table would be
finding all devices supported by a given HostName.
Or finding the entry for a given HostName and De-
viceName.

In MySQL, index tables are B-trees. Index table
insertion time thus depends on the table size and is
O(log n) where n is the number of entries in a table.
We felt that this insertion time could be minimized
by the judicious use of hashing.
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Figure 3: MySQL construction time for a given num-
ber of disk devices with memory tables.

To further substantiate this claim, we decided to
conduct an additional MySQL experiment with mem-
ory tables. The previous MySQL tables were created
on disk. It was possible that the poor MySQL perfor-
mance was the result of disk IO. If this was true, then
using memory tables should help eleviate the prob-
lem. So we did just that. The results were startling
to say the least and they are presented in Figure 3. It
required over 5 days to create the entire database of 1
million devices and 1 million reliability groups using
memory tables in MySQL. These results show that
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disk IO was not the cause of the poor MySQL per-
formance. But rather that index table construction
was the root of the problem.

We thus had the theoretical motivation to persue
a new type of database.

6 Stream Star Schema

In this section, we define the stream star schema that
will result in a database that is optimized for in-
sertion performance. This performance improvement
will primarily be the result of the improved attribute
indexing mechanism.

Many relational databases like MySQL use B-trees
to implement attribute indexes. Index table insertion
time thus depends on the table size and is O(log n)
where n is the number of entries in a table.

For the stream star schema, we proposed using
Hash Tables instead of B-Trees. Hash table inser-
tion time is a constant and thus not dependent on
table size. But the problem was how to implement
hashing in our new database.

The answer was in the judicious use of Python dic-
tionaries. In Python, arrays or tables can be defined
as lists or dictionaries. Lists are arrays that are in-
dexed by position. Dictionaries are indexed by at-
tribute name. Python dictionaries are analougous
to data structures in the C programming language,
where each attribute is identified by a unique name.
In Python, dictionary attribute names are hashed.
So a dictionary is actually a hash table.

Once we had solved the hashing problem, we
needed to create a generic stream star schema en-
gine that would allow custom databases to be created.
We thus defined an XML Schema Definition (XSD)
that is used to define the star schema database. This
XSD allows for the creation of multiple tables. A ta-
ble can include multiple attributes. Attributes have
two qualities: type and index. Attribute type is one
of: {int8, int16, int32, int64, uint8, uint16, uint32,
uint64, string}. Attribute index is a boolean that
allows attributes to be hashed. If attribute index is
FALSE, then the attribute is defined as a simple data
value. On the other hand if attribute index is TRUE,
then the attribute will be defined as a dictionary of

lists. That is, a hash table, where each entry is a
list of table indecies that contain that particular at-
tribute value.

For a given {stream star schema (SSS), fact ta-
ble (F), dimension (D), dimension value (V), data
row (R)} then the Python code to insert an attribute
value into an attribute hash table is presented in Fig-
ure 4.

This code snippet clearly has constant performance
time. Thus, performance for the stream star schema
attribute indexing method was constant and thus op-
timal.

The final hurdle that we had to cross so that the
stream star schema would be compatible and as capa-
ble as MySQL was how to store the database on disk?
We envisioned writing a complex library that would
flush a stream star schema from memory to disk and
then allow the converse. Turns out that this problem
has already been solved in Python. The solution is
called ”pickle” [6].

For a given file (F) and stream star schema (SSS),
the Python code that shows how a stream star
schema database is stored on disk is presented in Fig-
ure 5.

For a given file (F) the Python code that shows
how a stream star schema (SSS) is populated from
disk is presented in Figure 6.

Amazingly simple.

7 RESAR Stream Star Schema

Once the Stream Star Schema was defined, the Swift
RESAR database was also implemented as a Stream
Star Schema.

But there was a final piece to the puzzle. The
stream star schema needed a query language, like
SQL. Once again, Python came to the rescue. It
turns out that manipulating Python dictionaries is a
lot like executing SQL queries. Thus, in this case,
Python code was remarkably similar to SQL. For ex-
ample, consider the Python code that deletes a device
from the RESAR MySQL database, given a device ID
(DEVICE). This code is presented in Figure ??.

Now consider the corresponding code that deletes
a device from the RESAR stream star schema
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if "index" in sss[’fact_tables’][F][’dimensions’][D]:

if V not in sss[’fact_tables’][F][’dimensions’][D][’index’]:

sss[’fact_tables’][F][’dimensions’][D][’index’][V] = []

if R not in sss[’fact_tables’][F][’dimensions’][D][’index’][V]:

sss[’fact_tables’][F][’dimensions’][D][’index’][V].append(R)

Figure 4: Python code that inserts an attribute value into an attribute hash table.

fd = open(F, "wb")

pickle.dump(SSS, fd)

fd.close()

Figure 5: Python code that stores a stream star schema database to disk.

database, given a stream star schema (SSS) and de-
vice ID (DEVICE). This code is presented in Fig-
ure ??.
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Figure 7: Stream Star Schema construction time for
a given number of disk devices.

With all of the pieces in place, we could now con-
struct our RESAR stream star schema database. Fig-
ure 7 shows database construction time for a given
number of disk devices. So for a cloud cluster of 1
million devices, database construction time was (on
average) 0.00011 seconds for a single device and reli-
ability group. It only required less than 2 minutes to
create the entire database of 1 million devices and 1
million reliability groups. These results were greatly
significant when compared to the Star Schema. In
fact, the Stream Star Schema creation time was on
average 1,108 times faster than Star Schema creation.

That is a order of magnitude of 3.
We also tested query times for the same RESAR

star schema database. Table 2 presents the results.
The minimum query time was greater than 0.0000005
seconds. The maximum query time was less than
.0000065 seconds. Comparing the results from Ta-
ble 1 and Table 2, we see that the minimum query
time for the RESAR star schema was over 60 times
faster than the MySQL database. We also see that
the maximum query time for the RESAR star schema
was over 562 times faster than the MySQL database.

8 Conclusion

We have described and demonstrated a powerful ex-
tension to Swift cloud storage: Swift RESAR. This
facility greatly empowers Swift Administrators in
managing large numbers of cloud devices. It also fully
enables said administrators to employ mathematical
models so that device reliability can be optimized.
Previously, Swift ignored device management. Swift
RESAR extends this project in a painless manner
that is highly scalable. This project was implemented
in the popular and powerful programming language
- Python, thus enabling further development in this
area.

This paper has also presented a new approach to
processing data streams: the stream star schema.
This new type of star schema is proposed to accom-
modate high data stream rates: giga bits per second,
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fd = open(F, "rb")

SSS = pickle.load(fd)

fd.close()

Figure 6: Python code that populates a stream star schema database from disk.

by reducing insertion time to a constant. An exper-
imental implementation of both star schema types
on the RESAR data stream showed that stream star
schema insertion performance is constant and supe-
rior to star schema insertion performance by a factor
of over 1,000, which is 3 orders of magnitude.

Our new database does not only excel in inser-
tion performance, it also is superior in query per-
formance. The minimum query time for the RE-
SAR star schema was over 60 times faster than the
MySQL database. The maximum query time for the
RESAR star schema was over 562 times faster than
the MySQL database.

References

[1] I. Corderi, D. D. E. Long, T. M. Kroeger, and
T. Schwarz, “RESAR storage: a system for two-
failure tolerant, self-adjusting million disk stor-
age clusters,” tech. rep., University of California,
Santa Cruz, Santa Cruz, California, 2012.

[2] R. Kimball, “www.ralphkimball.com.”

[3] R. Kimball and J.Caserta, The Data Warehouse
ETL Toolkit. Wiley, 2004.

[4] MySQL.

[5] OpenStack, “Swift 1.7.6-dev documentation.”

[6] Python, “pickle python object serialization.”

[7] Wikipedia, “Openstack,” October 2012.

7



Database Table Name Average Query Time (seconds)
Device Table by (ID) 0.00038575144
Device Table by (HostName, DeviceName) 0.00045933403
Disklet Table by (ID) 0.00028206711
Disklet Table by (DeviceID) 0.00031838307
ReliabilityGroup Table by (ID) 0.00027287826
ReliabilityGroupsDisklets Table by (ID) 0.000272622203333
ReliabilityGroupsDisklets Table by (ReliabilityGroupID) 0.00035928513
ReliabilityGroupsDisklets Table by (DiskletID) 0.000347662563333
ReliabilityGroupsDisklets Table by (DeviceID) 0.00038096357

Minimum Query Time 0.000272622203333
Maximum Query Time 0.00045933403

Table 1: MySQL query times using 1 million devices.

Database Table Name Average Query Time (seconds) MySQL/SSS Ratio
Device Table by (ID) .000006425888 60
Device Table by (HostName, DeviceName) .00000221678 207
Disklet Table by (ID) .000000501782666667 562
Disklet Table by (DeviceID) .000001366214 233
ReliabilityGroup Table by (ID) .000000525165 519
ReliabilityGroupsDisklets Table by (ID) .000000524541 519
ReliabilityGroupsDisklets Table by (ReliabilityGroupID) .000001360337 264
ReliabilityGroupsDisklets Table by (DiskletID) .000000857825333333 405
ReliabilityGroupsDisklets Table by (DeviceID) .000001395876 272
Minimum Query Time .000000501782666667 60
Maximum Query Time .000006425888 562

Table 2: Stream Star Schema query times using 1 million devices.
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